簡易檢索 / 詳目顯示

研究生: 許明祺
Hsu, Ming-Chi
論文名稱: 液相沉積鈦酸鉛薄膜及其在微奈米結構製作上的應用
Liquid Phase Deposition of Lead Titanate Thin Films and Its Applications on Micro/Nano Fabrications
指導教授: 洪敏雄
Hon, Ming-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 131
中文關鍵詞: 液相沉積鈦酸鉛模板輔助成長轉印技術
外文關鍵詞: template assisted synthesis, lead titanate, transfer printing, liquid phase deposition
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鉛(PTO)系鐵電材料由於具有獨特的鐵電、壓電及焦電特性,可應用於許多電子及光電元件等系統,一直備受矚目,且為眾人廣泛研究的對象。為了與目前半導體製程整合,以製作非揮發性鐵電記憶體,其薄膜的製作方法在近年來頗受重視。然而,如何以簡單步驟、低成本、較不易造成環境污染的製程技術來製備PTO薄膜,已成為眾人所關注的目標。本研究提出一種新穎的水溶液薄膜製程技術-液相沉積法(LPD)成長PTO薄膜,研究在不同製程參數所得薄膜特性,並探討此技術對於一維奈米材料及二維圖案製備上的可能應用。
    首先,我們研究以LPD製備PTO薄膜的生長參數及材料特性,並探討其薄膜經過熱處理後的晶體成長機制。研究中發現,利用控制硼酸及反應溫度可改變薄膜的晶粒大小及成長速率,XRD顯示,初鍍膜為非晶質結構,經650 ℃熱處理30 min,薄膜轉變成具有正方結晶相的PTO。薄膜厚度為150 nm時,光學能隙也從初鍍的4.4 eV經熱處理650 ℃後,下降至3.7 eV。在1 kHz下,室溫的介電常數為96.8。由電滯曲線可知,薄膜的殘留極化值為2.1 μC/cm2,而矯頑電場為33.4 kV/cm。在相同3 keV的Ar+離子轟擊45 sec下,PTO非晶薄膜因熱處理過程使得F及O的含量減少,造成Pb2+還原成Pb0的程度由初鍍膜的63 %隨著熱處理溫度至400 ℃減至45 %。在結晶薄膜中Pb2+及Ti4+的還原程度隨著離子轟擊時間而增加,至穩定狀態時,Pb2+還原為Pb0約70 %,而薄膜中Ti4+、Ti3+跟Ti2+的含量比例分別為44.2 %、33.7 %及22.1 %。
    在一維奈米材料方面,以多孔氧化鋁做為模板,可製得規則性的PTO奈米線陣列,其中可藉由反應時間的改變,調控奈米管的管壁厚度,由XRD及TEM得知利用750 ℃熱處理,可獲得具有單一相PTO奈米結構,且與一般溶膠-凝膠(sol-gel)製程比較,具有較大的晶粒。而以單壁奈米碳管(SWCNTs)為模板,可經由液相沉積獲得均勻分散的a-PTO/SWCNT一維複合材料,但隨反應時間增長,因其表面電位降低而團聚形成奈米網狀結構失去其分散性。由電流-電壓量測顯示,經由a-PTO沉積,因薄膜中前驅物所含的氟造成n型嵌入的現象,使SWCNT之電阻下降。而由電流-時間測試結果,在長時間施加100 mV的偏壓下,a-PTO/SWCNT的電阻依然維持穩定,顯示a-PTO在室溫下可穩定地包覆SWCNT。
    最後,以一種新的表面修飾轉印技術結合LPD製作PTO微米級圖案,並討論彈性高分子聚二甲基矽氧烷(PDMS)表面的處理,對於薄膜沉積所產生的影響。由實驗結果得知,隨著表面修飾次數增多,PDMS的表面能也隨之升高,水接觸角從原本的110.4°,經過三次高分子電解質雙層修飾後降至53.6°,可將PTO薄膜沉積於PDMS上。隨後,利用傳統微影製程製作的PDMS模具沉積PTO薄膜,以化學自組裝(SAM)方式修飾基板,藉由基板與PTO之間的化學作用力,獲得二維及三維結構的PTO轉印圖案。

    Ferroelectric materials such as PbTiO3 (PTO) and others in the same family continue generating a great deal of research according to their unique ferroelectric, piezoelectric, and pyroelectric properties. These properties are particularly useful for many potential electronic and optical devices. In order to combine the semiconductor manufacture process to fabricate ferroelectric random access memory (FeRAM), fabrications of ferroelectric thin films have been developed rapidly in recent years. How to prepare PTO thin films by a simple, power-saving and environment friendly process is an important issue for most researchers. In this study, PTO thin films prepared by a novel aqueous process called liquid phase deposition (LPD) and the characterizations of films were described in detail. Moreover, based on the LPD technique, the applications on the fabrication of 1D nanostructures and 2D micro patterns were also studied.
    First of all, the deposition parameters and the properties of LPD-PTO thin film were studied. The effect of heat treatment on crystal growth mechanism was investigated as well. The particle size and deposition rates can be controlled by adjusting the amount of boric acid and reaction temperatures. According to XRD results, the as-deposited film is amorphous; and the single phase tetragonal PTO can be obtained by annealing at 650 ℃ for 30 min. The optical band gap drops from 4.4 eV to 3.7 eV when annealing temperature increases to 650 ℃ with with 150 nm thickness. The room-temperature dielectric constant of the PTO films is 96.8 for the film with 200 nm thickness at 1 kHz. It exhibits a hysteresis loop with a remanent polarization of 2.1 μC/cm2 and a coercive field of 33.4 kV/cm, respectively. Under 3 keV Ar+ bombardment, the reduction extent of Pb2+ in the amorphous films decreases from 63 % to 45 % as the annealing temperature increases to 450 ℃ . In the crystallized films, the reduction extents of Pb2+ and Ti4+ increase with sputtering time. After sputtering for 180 sec to the steady state, 70 % lead are reduced to the metallic state and titanium is found to be Ti4+ as 44.2 %, Ti3+ as 33.7%, and Ti2+ as 22.1 %.
    In respect of 1D nanostructure, the highly ordered PTO nanowire arrays were obtained using anodic aluminum oxide (AAO) as templates. Shell thickness of nanowires could be controlled by adjusting the reaction condition. The XRD and TEM analyses show that single phase could easily be obtained after post-annealing at 750 ℃and the nanowires are composed of larger crystals compared with that by conventional sol-gel process. Well dispersed a-PTO/SWCNTs 1D nanostructures could be prepared by LPD with single walled carbon nanotubes (SWCNTs) as template. As reaction time increases, the dispersion of a-PTO/SWCNTs decreases due to the weakness of surface charge. The a-PTO/SWCNTs woven fabric is formed by the aggregation. After a-PTO deposition, the I-V result shows that the resistance of SWCNT decreases because of the n-doping by fluorine in the thin film. And the I-T result shows that even by applying the bias voltage for a long time, the resistance of a-PTO/SWCNT is still in a steady state.
    Finally, a novel surface modified process combined with LPD and transfer printing is proposed to fabricate 2D PTO micropattern. The morphology and deposition rate of PTO on modified polydimethoxysiloxane (PDMS) surface are investigated. The surface energy of PDMS could be increased by the modification of polyelectrolyte and PTO thin films could easily be deposited on the surface. Afterward, PTO thin film deposited on the PDMS mold is prepared by conventional lithography. Due to the chemical interaction between PTO and substrate, PTO 2D and 3D structural micropatterns could be obtained by transfer printing on self-assembled monolayer (SAM) modified substrate.

    目錄 摘要 I 英文摘要 III 目錄 V 圖目錄 X 表目錄 XVIII 英漢名詞對照表 XIX 第一章 緒論 1 1-1前言 1 1-2 研究動機 4 第二章 理論基礎與文獻回顧 5 2-1 液相沉積法 5 2-2 鐵電性質原理 6 2-3 鐵電材料之介電行為 7 2-4 鈦酸鉛基本結構及薄膜製程比較 12 2-4.1 濺鍍法 12 2-4.2 有機金屬化學氣相沉積 13 2-4.3 脈衝雷射剝除法 13 2-4.4 有機金屬鹽裂解法及溶膠凝膠法 13 2-5 LaNiO3氧化物電極 15 2-6 模板輔助成長一維奈米材料 15 2-7 軟蝕刻技術 17 2-8 逐層組裝技術 19 第三章 實驗方法與步驟 21 3-1 實驗流程 21 3-2 液相沉積法製備鈦酸鉛薄膜 22 3-2.1 實驗藥品 22 3-2.2 基材清洗 22 3-2.3 鈦酸鉛薄膜之沉積 23 3-3 液相沉積法製備一維奈米材料 24 3-3.1 實驗藥品 24 3-3.2 實驗方法 24 3-4 直接轉印製備鈦酸鉛微米級圖案 26 3-4.1 實驗藥品 26 3-4.2 實驗方法 27 3-5 實驗儀器 27 3-5.1 熱重/熱差分析儀(TG/DTA) 27 3-5.2 傅利葉轉換紅外線光譜儀(FT-IR) 28 3-5.3 低掠角X光繞射儀(GIXRD) 28 3-5.4 掃瞄式電子顯微鏡(SEM) 28 3-5.5 化學分析光電子能譜儀(ESCA/XPS) 28 3-5.6 穿透式電子顯微鏡(TEM) 28 3-5.7 原子力顯微鏡(AFM) 28 3-5.8 拉曼光譜儀(Raman spectroscopy) 29 3-5.9 電性量測 29 第四章鈦酸鉛薄膜合成及特性研究 30 4-1 製程參數對PTO初始薄膜微結構及組成之影響 30 4-1.1 反應物濃度 30 4-1.2 反應溫度 34 4-1.3 薄膜元素組成 37 4-2 熱處理對於LPD製備PTO薄膜結構及特性 38 4-2.1 前驅物的熱分析 38 4-2.2 薄膜之晶體結構 41 4-2.3 薄膜之微觀型態 44 4-2.4 薄膜化學結構 46 4-2.5 薄膜能隙變化 50 4-2.6 薄膜電性 53 4-3 離子轟擊下LPD製備PTO薄膜表面微觀化學 56 4-3.1 Pb[TiF(6-x)(OH)x]非晶前驅物薄膜 56 4-3.2 PTO perovskite結晶薄膜 61 4-4 小結 67 第五章 液相沉積法製備一維奈米材料 68 5-1 前言 68 5-2以AAO模板輔助成長鈦酸鉛一維奈米結構陣列 69 5-2.1 鈦酸鉛一維奈米線陣列型態 69 5-2.2 鈦酸鉛一維奈米材料晶體結構 74 5-3 非晶鈦酸鉛包覆單壁奈米碳管一維複合材料 76 5-3.1 奈米碳管表面修飾 76 5-3.2 一維複合材料之表面型態及結構 78 5-3.3 反應時間對表面型態之影響 82 5-3.4 複合材料之電性研究 85 5-4 小結 94 第六章直接轉印製備鈦酸鉛微米級圖案 95 6-1 前言 95 6-2 PDMS表面修飾 97 6-3 LPD在LBL修飾PDMS表面之沉積行為 99 6-4 PTO圖案轉印 103 6-4.1 模具深寬比對轉印圖案之影響 103 6-4.2 薄膜厚度對轉印圖案之影響 106 6-5 小結 110 第七章 總結論 111 參考文獻 113 自述 131 圖目錄 Fig. 1-1 The diagram of MFM memory structure and the module process. 1 Fig. 2-1 Schematic illustration of LPD process and the reaction mechanism. 6 Fig. 2-2 A Polarization vs. Electric field (P-E) hysteresis loop and domain behaviors for a typical ferroelectric crystal. 9 Fig. 2-3 (a) Distortion of BaTiO3 unit cell in its polymorphic forms and (b) spontaneous polarization of BaTiO3 as a function of temperature. 10 Fig. 2-4 Schematic diagrams of different mechanisms of polarization. 11 Fig. 2-5 Frequency dependence of contributions to the polarization. 11 Fig. 2-6 The crystal structure of PbTiO3. (a)above Tc and (b) below Tc, the structure is slightly deformed with Pb2+ and Ti4+ ion displaced relative to O2- ions, thereby developing a dipole moment. 14 Fig. 2-7 Schematic drawings illustrating the formation of nanowires and nanotubes by filling and partial filling the pores within a porous membrane 16 Fig. 2-8 Schematic process and the TEM image of CNT/TiO2 core shell nanowires. 17 Fig. 2-9 Schematic process and the SEM image of GaN nanotubes using ZnO nanowires as template. 17 Fig. 2-10 Schematic prodedures for microcontact printing of hexadecanethiol (HDT) on the surface of gold. 18 Fig. 2-11 Schematic illustration of PDMS mold preparation and soft lithography techniques used to pattern ceramic materials. 18 Fig. 2-12 Top: Simplified molecular concept of the first two adsorption steps depicting film deposition starting with a positively charged substrate. Bottom:Schematic of the film deposition process using glass slides and beakers. Steps 1 and 3 represent the adsorption of a polyanion and polycation respectively, and steps 2 and 4 are washing steps. 20 Fig. 2-13 Schematic process and the AFM image of patterned TiO2 film using polymer stamped molecular templates. 20 Fig. 3-1 Flow chart for the experiment. 21 Fig. 3-2 X-ray diffraction pattern of LNO thin film grown on Pt/Ti/SiO2/Si substrate. 23 Fig. 3-3 Schematic diagram of the apparatus for LPD-PTO deposition. 24 Fig. 3-4 Schematic diagram of the structure for SWCNT-FET. 25 Fig. 3-5 Chemical formulas and structures of polyelectrolytes used in experiment process 26 Fig. 4-1 SEM images of PTO precursor films deposited on LNO substrate at 30 ℃ for 2 h with a molar ratio of Pb/Ti/B (a)1:1:2; (b)1:1:3; and (c)1:1:4. 32 Fig. 4-2 Film thicknesses of PT precursor thin film deposited on LNO substrate with different deposition times. 33 Fig. 4-3 SEM images of PTO precursor thin films deposited on LNO substrate for 2 h with a molar ratio of Pb/Ti/B 1:1:3 at (a)30 ℃, (b)40 ℃ and (c)50 ℃. 35 Fig. 4-4 Film thickness of PTO precursor film deposited on LNO substrate with different deposition temperatures. 36 Fig. 4-5 TGA and DTA plots of PTO precipitate powders prepared by LPD. 40 Fig. 4-6 FT-IR spectra of PTO precipitate powders (a) as-deposited and (b) after annealing at 750 ℃. 40 Fig. 4-7 Thickness of LPD-PTO thin films as a function of annealing temperature. 41 Fig. 4-8 XRD patterns of LNO substrate, the as-deposited PTO thin film on the LNO substrate and after annealing in air at 450, 550, and 650 ℃ for 30 min, respectively. 42 Fig. 4-9 Raman spectra of the as-deposited PTO thin film on the LNO substrate and after annealing in air at 450, 550, and 650 ℃ for 30 min, respectively. 43 Fig. 4-10 SEM images of PTO thin film (a) as-deposited and annealed at (b) 550 ℃ and (c) 650 ℃. 45 Fig. 4-11 Cross section of PTO thin film on LNO/Pt/Ti/SiO2/Si substrate. 46 Fig. 4-12 XPS survey of the as-deposited PTO thin film and after annealing at 650 ℃ for 30 min. 48 Fig. 4-13 XPS spectra of F 1s for the as-deposited PTO thin films and those annealed at various temperatures for 30 min. 48 Fig. 4-14 XPS spectra of the Pb 4f, Ti 2p and O 1s for the deposited PTO films annealed at various temperatures. 49 Fig. 4-15 Optical transmittance for the as-deposited PTO thin film and those annealed at various temperatures for 30 min. 52 Fig. 4-16 Optical band gaps for the as-deposited PTO thin film and those annealed at various temperatures for 30 min. 52 Fig.4-17 Polarization-electric field (P-E) hysteresis loop for the PTO thin films annealing at 550 ℃ and 650 ℃. 53 Fig. 4-18 C-V characteristics of the PTO thin film. 54 Fig. 4-19 The variation of dielectric constant and dielectric loss for the PTO thin film. 55 Fig. 4-20 Pb 4f XPS peak shape of PTO thin films annealed at different temperatures before and after sputtering with Ar+ for 45 sec. 58 Fig. 4-21 (a) Narrow scan XPS spectra of Pb 4f with peak curve fitting of PTO thin films annealed at different temperatures with Ar+ for 45 sec (b) Atomic percentage of metallic Pb in total Pb compound annealed at different temperatures. 59 Fig. 4-22 Ti 2p XPS peak shape of PTO thin films annealed at different temperatures before and after sputtering with Ar+ for 45 sec. 60 Fig. 4-23 Montage display of detail scanned :Pb 4f, Ti 2p, O 1s, during 11cycles of Ar+ ion sputtering gives in depth information for perovskite PTO thin film. 63 Fig. 4-24 Narrow-scan XPS spectra of Pb 4f for perovskite PTO thin film during Ar+ sputtering. 64 Fig. 4-25 Narrow-scan XPS spectra of Ti 2p for perovskite PTO thin film during Ar+ sputtering. 65 Fig. 4-26 Narrow-scan XPS spectra of O 1s for perovskite PTO thin film during Ar+ sputtering. 66 Fig. 5-1. SEM micrographs of nanowires formed by LPD method using 200 nm AAO membranes. (a) Top view image of the PTO nanowire arrays grown within an AAO template. (b) Side view image of PTO nanowires bundle together after removing the AAO template. (c)Energy dispersive spectroscopy of the bulk nanowire samples after removing the AAO template. 71 Fig.5-2 Schematic illustration of the formation process of PbTiO3 nanowires. 72 Fig. 5-3 TEM images of PTO nanotubes prepared by different deposition time of (a) 0.5 h, (b) 1.5 h. 73 Fig. 5-4 X-ray diffraction pattern of the PTO nanowire arrays as annealed at 750 ℃. 75 Fig. 5-5. (a) TEM image of an isolated PTO nanotube as annealed at 750 ℃after dissolving AAO template and the corresponding selected area diffraction pattern of the nanotube (inset). (b) HRTEM lattice image of the nanotube. 75 Fig. 5-6 Non-covalent functionalization methods of SWCNTs(a) exohedral functionalization with surfactant, such as SDS (b) exohedral functionalization with polymer such as PEI. 77 Fig. 5-7 Photograph of SWCNTs aqueous solutions (a) before and (b) after PEI polyelectrolyte modification. 77 Fig. 5-8 SEM images of the PTO-SWCNTs formed from PEI-SWCNT solution after 1 h reaction in LPD solution. (a) Overview of SEM, (b) high magnification, (c) the ends and the fracture of a-PTO/SWCNTs. 79 Fig.5-9 XRD pattern of SWCNTs coated with a-PTO. 80 Fig. 5-10 Energy dispersive spectroscopy (EDS) spectrum of a-PTO coated SWCNTs. 80 Fig. 5-11 TEM images of (a) a-PTO/SWCNTs and (b) higher magnification. 81 Fig. 5-12 SEM images of a-PTO/SWCNTs fromed from PEI-SWCNTs solution after (a) 1 h, (b) 1.5 h, (c)2.5 h reaction in LPD solution. 83 Fig 5-13 Zeta-potential of PEI-SWCNTs in LPD reaction solution as a function of time. 84 Fig. 5-14 Schematic representation of the formation of coated ropes. 84 Fig. 5-15 Schematic process of a-PTO deposited on SWCNT-FET. 85 Fig. 5-16 (a) AFM image of isolated SWCNT in FET and (b) Raman spectrum of SWCNT. 88 Fig.5-17 WG- and WG+ for semiconducting (filled circles) and metallic (open circles) SWNTs are plotted as a function of 1/dt . 89 Fig. 5-18 (a) Current-voltage characteristics of SWCNT-FET. Gate voltage (Vg) is shifted from 4V to -4V in 0.5V step (b) Drain current as a function of Vg with VSD=100 mV. 90 Fig. 5-19 AFM image of isolated SWCNT in FET after PTO deposition for 1h and (b) Raman spectra of SWCNT after PEI modification and PTO deposition. 91 Fig. 5-20 Raman spectra of isolated SWCNT before and after PEI modification. 92 Fig. 5-21 Current-voltage characteristics of SWCNT-FET, PEI-modified, and PTO deposition. 92 Fig. 5-22 Current-time (I-T) characteristics of a-PTO/SWCNT FET. 93 Fig. 6-1 Schematic process of direct printing of copper pattern. 96 Fig. 6-2 A schematic representation outlining each step of the procedure. 96 Fig. 6-3 Water contact angle images of (a) pristine PDMS and those modified with (b)PAH/PSS/PDAC (c)PAH(PSS/PDAC)2 (d)PAH/(PSS/PDAC)3. 98 Fig. 6-4 Plot of water contact angle of PDMS versus the number of (PSS/PDDA) bilayer. 98 Fig. 6-5 UV-Visible absorption spectra of [PSS/PDAC]n films on a PDMS. The inset shows the absorbance of PSS at λmax (232 nm) versus the number of bilayer. 99 Fig. 6-6 SEM micrographs of PTO films deposited on PDMS substrate modified with PAH/(PSS/PDDA)3 after (a)2 h, (b)6 h and (c)9 h reaction. 101 Fig. 6-7 Film thicknesses of PTO thin films deposited on PDMS substrate with different deposition times. 102 Fig. 6-8 SEM micrographs of PTO films deposited on PDMS substrate after (a)8 h, (b)11 h deposition 102 Fig. 6-9 (a) Top view and (b) Cross sectional SEM images of PDMS mold A, (c) top view and (d) cross section images of mold B. 104 Fig. 6-10 (a) SEM images of PTO lines using Mold A produced by transfer printing, (b) higher magnification. 105 Fig. 6-11 (a) SEM images of PTO lines using mold B produced by transfer printing. (b) higher magnification (c) side view 105 Fig. 6-12 (a) Top view and (b) Side view SEM images of PDMS mold. 107 Fig. 6-13 SEM images of PTO patterns fabricated by transfer printing for depositing 5 h (a), (b); 7 h (c), (d); and 9 h (e), (f). 108 Fig. 6-14 SEM top and side views of 3D PTO patterns produced by transfer printing and the higher magnification 109 Fig. 6-15 Schematic illustration of routes for different structures by transfer printing (a) 2D micropatterns, (b) 3D structures, and (c) porous 3D micropatterns 109 表目錄 Table 1-1 Characteristics of FeRAM and other memory devices. 2 Table 1-2 Non-silica oxide thin films deposited via LPD method. 4 Table 4-1 ICP-MS analysis of as-deposited thin films and reaction solutions prepared by LPD method with different Pb/Ti ratios. 37

    [1] R. Ramesh, S. Aggarwal, O. Auciello, “Science and technology of ferroelectric films and heterostructures for no-volatile ferroelectric memories”Materials Sci. Eng., 32, 191 (2001)
    [2] R.Takayama, Y. Tomita, K. Iijima, I. Ueda, “Preparation and. characteristics of pyroelectric infrared sensors made of c-axis oriented. La-modified PbTiO3 thin films”J. Appl. Phys., 61, 411 (1987)
    [3] J. F. Scott, D. A. Paz de Aroujo, “Ferroelectric memories”, Science, 246, 1400 (1989)
    [4] 李思毅, “鐵電記憶體的前瞻與挑戰”, 電子月刊, 鐵電記憶元件特輯, 第四期 (2002)
    [5] Fujitsu web page, “FeRAM guide book, chapter 2”. www.fujitsu.com
    [6] O. Auciello, J. F. Scott, R. Ramesh, “The physics of ferroelectric memories”, Phys. Today, July, 22 (1998)
    [7] V. G. Gavrilyachenko, R. I. Spinko, M. A. Martynenko, and E. G. Fesenko, “Spontaneous polarization and coercive field of lead titanate.”, Sov.Phys.Solid State, 12, 1203 (1970)
    [8] B. Jaber, D. Remiens, B. Thierry, “In situ sputter deposition of PbTiO3 thin films on different substrates: influence of the growth temperature and the sputtered lead flux on the perovskite phase formation”, J. Mater. Res., 12, 997 (1997)
    [9] S. Hayamizu, A. Yahashi, Y. Shibata, “Preparation of PbTiO3 thin films by reactive ionized cluster beam deposition”, Jpn. J. Appl. Phys., 31, 2975 (1992)
    [10] E. Fujii, A. Tomozawa, S. Fujii, H. Torii, R. Takayama, “Preparation of PbTiO3 thin films by plasma-enhanced metalorganic chemical vapor deposition”, Appl. Phys. Lett., 65, 365 (1994)
    [11] V. R. Palkar, S. C. Purandare, S. P. Pai, S. Chattopadhyay, P. R. Apte, R. Pinto, M. S. Multani, “C-axis oriented ferroelectric thin films of PbTiO3 on Si by pulsed laser ablation ”, Appl. Phys. Lett., 68, 1582 (1996)
    [12] M. L. Calzada, A. Gonzales, R. Poyato, “Photo-sensitive sol-gel solutions for the low-temperature UV-assisted processing of PbTiO3 based ferroelectric thin films”, J. Mater. Chem., 13, 1451 (2003)
    [13] D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, “Structure, dielectric, and ferroelectric properties of PbTiO3 thin films by a simple sol-gel technique”, Mater. Sci. & Eng. B, B94, 269 (2002)
    [14] T. W. Dekleva, J. M. Hayes, L. E. Cross, G. L. Geoffroy, “Sol-gel processing of lead titanate in 2-methoxyethanol-investigations into the nature of the prehydrolyzed solutions”, J.Am. Ceram. Soc.,7(5), C-280 (1988)
    [15] M. H. M. Zai, A. Akiba, H. Goto, M. Matsumoto, E. M. Yeatman, “Highly (111) oriented lead zirconate titanate thin films deposited using a non-polymeric route”, Thin Solid Films, 394, 97 (2001)
    [16] Y. Suyama, T. Noritake, M. Nagasawa, “Formation of BaTiO3 from a barium titanium isoproxide complex”, Jpn. J. Appl. Phys., 36, 5939 (1997)
    [17] H. Nagayama, H. Honda, H. Kawahare, “A new process for silica coating ”, J. Electrochem. Soc., 135, 2013 (1988)
    [18] T. Homma, T. Katoh, Y. Yamada, Y. Murao, “A selective SiO2 film-formation technology using liquid phase deposition for fully planarized multilevel interconnections”, J. Electrochem. Soc., 140, 22410 (1993)
    [19] S. Deki, Y. Aoi, O. Hiroi, A. Kajinami, “Titanium (IV) oxide Thin Films Prepared from Aqueous Solution”, Chem. Lett., 96, 433 (1996)
    [20] T. Yao, I. Inui, A. Ariyoshi, “A.novel method for zirconium oxide synthesis from aqueous solution”, J. Am. Ceram. Soc., 79, 3329 (1996)
    [21] T. P. Niesen, M. R. De Guire, “ Review: Deposition of ceramic thin films at low temperatures from aqueous solutions”, J. Electroceram., 6, 169 (2001)
    [22] 余萍、陳善華, “ 液相沈積法的應用與發展”,廣東微量元素科學,第13卷第3期,12 (2006)
    [23] www.chem.ryukoku.ac.jp/aoi/research/LPD.htm
    [24] B. T. Batthais, A. V. Hippel, “Domain structure and phase transitions of barium titanate single crystal”, Phys. Rev., 73, 1378 (1948)
    [25] A. V. Hippel, “Ferroelectricity, domain structure and phase transitions of barium titanate”, Rev. Modern Phys., 22, 221 (1950)
    [26] Y. Xu, “Ferroelectric materials and their applications”, Elsevier, North Holland, Amsterdam, Chap. 1, 10 (1991)
    [27] A. J. Moulson, J. M. Herbert, “Electroceramic: materials、properties、applications”, Chapman and Hall, Chap. 2, 19&72 (1990)
    [28] W. D. Callister JR, “Materials science and engineering as introduction 4/e”, John Wiely and Sons, New York, Chap. 19, 767 (2000)
    [29] M. E. Lines, A. M. Glass, “Principles and applications of ferroelectrics and related materials”, Oxford University Press, New York, Chap.1, 8 (2001)
    [30] B. E. Gnade, S. R. Summerfelt, D. Crenshaw, “Processing and device issues of high permittvity materials for DRAMs”, O. Auciello and R. Waser eds., Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, 373 (1995)
    [31] V. R. Palkar, S. C. Purandare, R. Pinto, “Ferroelectric thin films of PbTiO3 on silicon”, J. Phys. D: Appl. Phys., 32, R1–R18 (1999)
    [32] 許文東, “ 有機金屬裂解法製備Pb(Zr1-xTix)O3薄膜及其鐵電特性”,國立清華大學材料科學與工程學系碩士論文,Chap 2, P.6 (1998)
    [33] M. Okuyama, Y. Matsui, H. Nakagawa, Y. Hamakawa, “Preparation of PbTiO3 thin films by RF sputtering”, Jpn. J. Appl. Phys., 18(8), 1633 (1979)
    [34] D. Remiens, B. Jaber, P. Tronc, B. Thierry, “Structural and electrical properties of PbTiO3 thin films grown on silicon substrates”, J. Eur. Ceram. Soc., 16, 467 (1996)
    [35] M. Vellaikal, A. I. Kingon, “Electrical and microstructural characterization of lead titanate thin films deposited by metal-organic chemical vapor deposition onto platinum and magnesium oxide”, Thin Solid Films, 287, 139 (1996)
    [36] E. Fujii, A. Tomozawa, S. Fujii, H. Torli, R. Takayama, “Preparation of PbTiO3 thin films by plasma-enhanced metalorganic chemical vapor deposition”, Appl. Phys. Lett., 65, 365 (1994)
    [37] M. Okuyama, J. Asano, T. Imai, D. H. Lee, Y. Hamakawa, “Preparation of PbTiO3 thin films on Si by ArF excimer-laser ablation”, Jpn. J. Appl. Phys., B 32, 4107 (1993)
    [38] Y. M. Wu, J. T. Lo, “Dielectric properties of PbTiO3 thin films on CeO2/Si(100) and Y2O3/Si(100)” , Jpn. J. Appl. Phys., 37, 5645 (1998)
    [39] A. Li, D. Wu, C. Z. Ge, H. Wamg, M. Wang, M. Wang, Z. Liu, N. Ming, “ Structural and electrical properties of PbTiO3 thin films on conductive oxide LaNiO3 coated Si substrates prepared by sol-gel method”, Thin Solid Films, 375, 220 (2000)
    [40] R. W. Vest, J. Xu, “PbTiO3 films from metalorganic precursor”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 35(6), 711 (1988)
    [41] D. H. Bao, N. Mizutani, X. Yao, and L. Y. Zhang, “Structural, dielectric, and ferroelectric properties of compositionally graded (Pb,La)TiO3 thin films with conductive LaNiO3 bottom electrodes” Appl. Phys. Lett., 77, 1041 (2000)
    [42] H. Y. Lee, T. B. Wu, and J. F. Lee, “X-ray absorption spectroscopic studies of sputter-deposited LaNiO3 thin films on Si substrate”, J. Appl. Phys., 80, 2175 (1996)
    [43] M. C. Hsu, Y. M. Sun, I. C. Leu, M. H. Hon, “ Structural and electrical characterizations of PbTiO3 thin films grown on LaNiO3-Buffered Pt/Ti/SiO2/Si substrates by liquid phase deposition ”, J. Electrochem. Soc., 153, F260 (2006)
    [44] B. J. Kim, J. Lee, J. B. Yoo, “Sol-gel derived (La, Sr)CoO3 thin films grown on silica glass”, Thin Solid Films, 341, 13 (1999)
    [45] S. M. Yoon, E. Tokumitsu, H. Ishiwara, “Preparation of PbZrxTi1-xO3/LaxSr1-xCoO3 heterostructures using the sol-gel method and their electrical properties”, Appl. Surf. Sci., 117-118, 447, (1998)
    [46] C. B. Eom, R. B. Van Dover, J. M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K., “Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes”, Appl. Phys. Lett., 63, 2570 (1993)
    [47] G. S. Wang, J. G. Cheng, X. J. Meng, J. Yu, Z. Q. Lai, J. Tang, S. L. Guo, J. H. Chu, G. Li, Q. H. Lu, “Properties of highly (100) oriented Ba0.9Sr0.1TiO3/LaNiO3 heterostructures prepared by chemical solution method ”, Appl. Phys. Lett. 78, 4172 (2001)
    [48] S. Yu, K. Yao, F. E. H. Tay, “Preparation, Structure, and Properties of 0.3Pb(Zn1/3Nb2/3)O3-0.7PbTiO3 Thin Films on LaNiO3/YSZ/Si Substrates”, Chem. Mater., 16, 346 (2004)
    [49] 賴昇志, “以LaNiO3下電極,開發PZT鐵電記憶體低溫製程之研究”,國立清華大學材料科學與工程學系碩士論文,Chap 2, P. 20 (2000)
    [50] C. R. Martin, “Nanomaterials- A membrane-based synthetic approach”, Science, 266, 1961 (1994)
    [51] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, “ One dimensional materials: synthesis, characterizations and applications”, Adv. Mater., 15, 353 (2003)
    [52] Y. C. Wang, I. C. Leu, M. H. Hon, “Effect of colloid characteristics on the fabrication of ZnO nanowires arrays by electrophoretic deposition ”, J. Mater. Chem., 12, 2439 (2002)
    [53] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, “Direct assembly of one-dimensional nanostructures into functional network”, Science, 291, 630 (2001)
    [54] Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, P. Yang, “Inorganic seminductor nanowires: rational growth, assembly, and novel properties”, Chem. Eur. J., 8, 1261 (2002)
    [55] A. Gomathi, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, “Chemically bonded ceramic oxide coating on carbon nanotubes and inorganic nanowires” Adv. Mater., 16, 84 (2004)
    [56] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, P. Yang, “Single crystal gallium nitride nanotubes”, Nature, 422, 599 (2003)
    [57] Y. Xia, G. M. Whitesides, “Soft Lithography”, Annu. Rev. Mater. Sci. 28, 153 (1998)
    [58] A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning of self-assembled monolayers :applications in materials science”, Langmuir, 10, 1498 (1994)
    [59] A. Carvalho, M. Geissler, H. Schmid, B. Michael, E. Delamarche, “ Self-Assembled Monolayers of Eicosanethiol on Palladium and Their Use in Microcontact Printing”, Langmuir, 18, 2406 (2002)
    [60] J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, “Self-Assembled Monolayers of Alkanethiolates on Palladium Are Good Etch Resists”, J. Am. Chem. Soc., 124, 1576 (2002)
    [61] X. M. Zhao, Y. N. Xia, G. M. Whitesides, “Fabrication of three-dimensional micro-structures: Microtransfer molding”, Adv. Mater., 8, 837 (1996)
    [62] Y. Xia, E. Kim, G. M. Whitesides, “Micromolding of Polymers in Capillaries: Applications in Microfabrication”, Chem. Mater., 8, 1558 (1996)
    [63] C. Marzolin, S. P. Smith, M. Prentiss, G. M. Whitesides “Fabrication of Glass Microstructures by Micro-Molding of Sol-Gel Precursors”, Adv. Mater., 10, 571 (1998)
    [64] C. R. Martin, I. A. Aksay, “Submicrometer-scale patterning of ceramic thin films”, J. Electroceram. 12, 53 (2004)
    [65] P. K. H. Ho, J.S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes”, Nature, 404, 481 (2000)
    [66] X. Zhang, J. Shen, “Self-Assembled Ultrathin Films: From Layered Nanoarchitectures to Functional Assemblies”, Adv. Mater., 11, 1139 (1999)
    [67] J. D. Mendelson, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, M. F. Rubner, “Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers ”, Langmuir, 16, 5017 (2000)
    [68] A. Laschewsky, E. Wischerhoff, M. Kauranen, A. Persoons, “Polyelectrolyte Multilayer Assemblies Containing Nonlinear Optical Dyes ”, Macromolecules, 30, 8304 (1997)
    [69] K. Hyde, M. Rusa, J. Hinestroza, “Layer by layer deposition of polyelectrolyte nanolayers on natural fibers:cotton”, Nanotechnology, 16, s422 (2005)
    [70] G. Decher, J. B. Schlenoff, “Multilayer thin films: Sequential Assembly of Nanocomposite Materials”, Wiley-VCH Verlag GmbH & Co. KGaA, Chap. 1, 4 (2002)
    [71] J. Cho, K. Char, J. D. Hong, K. B. Lee, “Fabrication of Highly Ordered Multilayer Films Using a Spin Self-Assembly Method”, Adv. Mater. 13, 1076 (2001)
    [72] A. N. Zelikin, Q. Li, F. Caruso,“Degradable polyelectrolyte capsules filled with oligonucleotide sequences”, Angew. Chem. Int. Ed., 45, 7743(2006)
    [73] M. T. Crisp, N. A. Kotov, “Preparation of Nanoparticle Coatings On Surfaces Of Complex Geometry”, Nano Letters, 3(2), 173 (2003)
    [74] Y. S. Kim,H. H. Lee, P. T. Hammond, “High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers”, Nanotechnology, 14, 1140 (2003)
    [75] M. C. Berg, S. Y. Yang, P. T. Hammond, M. F. Rubner, M, “Controlling mammalian cell interactions on patterned polyelectrolyte multilayer surfaces”, Langmuir, 20, 1362 (2004)
    [76] H. Tokuhisa, P. T. Hammond, “Nonlithographic micro- and nanopatterning of TiO2 using polymer stamped molecular templates”, Langmuir, 20, 1436 (2004)
    [77] G. H. Bogush, C. F. Zukoski, “Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides”, J. Colloid and Interface Sci., 142, 1, (1991)
    [78] G. H. Bogush, C. F. Zukoski, “Uniform silica particle precipitation: An aggregative growth model”, J. Colloid and Interface Sci., 142, 19, (1991)
    [79] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, “The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition ”, J. Phys. Chem. B, 107, 13871 (2003)
    [80] A. C. Pierre, “Introduction to Sol-Gel Processing”, Kluwer Academic Publishers, Boston, (1998)
    [81] B. N. Wani, U. R. J. Rao, “Synthesis, unit cell dimensions and thermal stability of (NH4)3ReF6‧1.5H2O”, J. Mater. Sci. Lett., 13, 879 (1994)
    [82] Gao, Y. Masuda, T. Yonezawa, K. Koumoto, “Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled monolayers by the liquid phase deposition method”, Chem. Mater., 14, 5006 (2002)
    [83] N. K. Laptash, I. G. Maslennikova, T. A. Kaidalova, “Ammonium oxofluorotitanates”, J. Fluorine Chem., 99, 133 (1999)
    [84] E. R. Leite, C. M. G. Sousa, E. Longo, J. A. Varela, “Influence of polymerization on the synthesis of SrTiO3.1. characteristics of the polymeric precursoe and their thermal-decomposition”, Ceram. Inter., 21, 143 (1995)
    [85] B. Klingenberg, B, M. A. Vannice, “ Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders”, Chem. Mater., 8, 2755 (1996)
    [86] H. Y. Ko, M. Mizuhata, A. Kajinami, S. Deki, “Fabrication of high performance thin films from metal fluorocomplex aqueous solution by the liquid phase deposition”, J. Fluorine Chem., 120, 157 (2003)
    [87] S. Chopra, S. Sharma, T. C. Goel, R. G. Mendiratta, “Electric and optical properties of sol-gel derived La modified PbTiO3 thin films”, Appl. Surf. Sci., 230, 207 (2004)
    [88] D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, “Structural, dielectric and ferroelectric properties of PbTiO3 thin films by a simple sol-gel technique”, Mater. Sci. Eng., B94, 269 (2002)
    [89] J. Cheng, L. He, S. Yu, Z. Meng, “Detection of residual stresses in Pb(Zr0.53Ti0.47)O3 thin films prepared on LaNiO3 buffered metal substrates with Raman spectroscopy”, Appl. Phys. Lett., 88, 152906 (2006)
    [90] C. M. Foster, Z. Li, M. Grimsditch, S. K. Chan, D. J. Lam, “Anharmonicity of the lowest-frequency A(1)(TO) phono in PbTiO3”, Phys. Rev. B, 48, 10160 (1993)
    [91] M. Uemura, M. Mizuhata, A. Kajinami, S. Deki, “Novel Fabrication of high-quality ZrO2 ceramic thin films from aqueous solution”, J. Am. Ceram. Soc., 88, 2923 (2005)
    [92] 石忠民,“以液相沈積法生長氧化鈦薄膜及其應用”, 國立中山大學電機工程學系博士論文,Chap 3, P. 17 (2005)
    [93] C. J. Huang, A. X. Kuang, and G. Y. Huang, “X-ray photoelectron spectroscopy study on composition and structure of sol-gel derived PbTiO3 thin films”, J. Appl. Phys., 80, 202 (1996)
    [94] S. Kim, T. J. O’Leary, and N. Winograd, “X-ray photoelectron spectra of lead oxides”, Anal. Chem., 45, 2214 (1973)
    [95] D. Jiles,“Introduction to the electronic materials”, Chapman and Hall, 9, 180 (1994)
    [96] Y. Gao, Y. Masuda, K. Koumoto, “Band gap energy of SrTiO3 thin film prepared by the liquid phase deposition method”, J. K. Ceram. Soc., 40, 213(2003)
    [97] C. H. Peng, S. B. Desu, “Modified envelope method for obtaining optical-properties of weakly absorbing thin-film and its application to thin films of Pb(Zr,Ti)O3 solid solution”, J. Am. Ceram. Soc., 77, 929 (1994)
    [98] S. D. Cheng, C. H. Kam, Y. Zhou, W. X. Que, Y. L. Lam, Y. C. Chan, W. S. Gan, “ Sol-gel derived nanocrystalline thin films of PbTiO3 on glass substrate”, Thin Solid Films, 375, 109 (2000)
    [99] G. W. Hwang, H. J. Lee, K. Lee, C. S. Hwang, “ Atomic layer deposition and electrical properties of PbTiO3 thin films using metallorganic precursors and H2O”, J. Electrochem. Soc., 154, G69 (2007)
    [100] H. M. Chen, J. Y. M. Lee, “Electron trapping process in ferroelectric lead-zirconate-titanate capacitors”, Appl. Phys. Lett., 73, 309 (1998)
    [101] D. Leinen, A. Fernandez, J. P. Espinos, A. R. Gonzalez-Elipe, “Chemical effect in TiO2 and titanates due to bombardment with Ar+ and O2+ ions of different energies (3.5-10 keV) ”, Appl. Phys. A, 63, 237 (1996)
    [102] O. P. Ivanova, A. V. Naumkin, L A. Vasilyev, “The effect of 6 keV Ar+ ion bombardment on the surface composition of simple and complex titanium oxides”, Vacuum, 46, 363 (1995)
    [103] D. F. Mitchell, G. I. Sproule, M. J. Graham, “Sputter reduction of oxide by ion bombardment during Auger depth profile analysis”, Surf. Int. Anal., 15, 487 (1990)
    [104] D. Leinen, A. Fernandez, J. P. Espinos, A. R. Gonzalez-Elipe, “XPS and ISS study of NiTiO3 and PbTiO3 subjected to low-energy ion bombardment”, Surf. Interface. Anal., 20, 941 (1993)
    [105] C, J. Lu, A. X. Kuang, G. Y. Huang, “ X-ray photoelectron spectroscopy study on composition and structure of sol-gel derived PbTiO3 thin films”, J. Appl. Phys., 80, 202 (1996)
    [106] J. N. Kim, K. S. Shin, D. H. Kim, B. O. Park, N. K. Kim, S. H. Cho, “Changes in chemical behavior of thin film lead zirconate titanate during Ar+-ion bombardment using XPS”, Appl. Surf. Sci., 206, 119 (2003)
    [107] Handbook of X-ray photoelectron spectroscopy (KRATOS, 1979)
    [108] H. M. Duiker, P. D. Beale, J. F. Scott, G. A. Araujo, B. M. Melnick, J. D. Cuchiaro, L. D. McMillan, “Fatigue and switching in ferroelectric memories: Theory and experiment”, J. Appl. Phys. 68, 5783 (1990)
    [109] P.M. Ajayan, T.W. Ebbesen, “Nanometer size tubes of carbon”, Rep. Prog. Phys. 60, 1025 (1997)
    [110] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F.Kim, H. Yan, “One-dimensional nanostructures: synthesis, characterization and applications”, Adv. Mater. 15, 353 (2003)
    [111] R.A. Caruso, M. Antonietti, “Sol-Gel Nanocoating: An Approach to the Preparation of Structured Materials”, Chem. Mater. 13, 3272 (2001)
    [112] Y. H. Wang, Y. N. Li, J. Lu, J. B. Zang, H. Huang, “ Microstructure and thermal characteristic of Si-coated multi-walled carbon nanotubes”, Nanotechnology, 17, 3817 (2006)
    [113] S. Kenane, L. Piraux, “Electrochemical self-assembly of Cu/Cu2O nanowires”, J. Mater. Res. 17, 401 (2002)
    [114] J. Junqurea, P. Ghosez, “Critical thickness for ferroelectricity in perovskite ultrathin films”, Nature 422, 6931 (2003)
    [115] A. Roelofs, I. Schneller, K. Szot, “Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity”, Appl. Phys. Lett. 81, 5231 (2002)
    [116] Y. Wang, J.J. Santiago-Aviles, “Synthesis of lead zirconate titanate nanofibres and the Fourier-. transform infrared characterization of their metallo-organic decomposit on process”, Nanotechnology 15, 32 (2004)
    [117] B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dohout, “Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes”, Chem. Mater. 14,480 (2002)
    [118] Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R. B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, “Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate”, Appl. Phys.Lett. 83, 440 (2003)
    [119] X.Y. Zhang, X. Zhao, C.W. Lai, “Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays”, Appl. Phys. Lett. 85, 4190 (2004)
    [120] S. J. Limmer, S. Seraji, M. J. Forbess, Y. Wu, T. P. Chou, C. Nguyen, G. Cao, “Electrophoretic growth of lead zirconate titanate nanorods”, Adv. Mater., 13, 1269 (2001)
    [121] S. Deki, S. Iizuka, “Liquid-Phase Infiltration (LPI) Process for the Fabrication of Highly Nano-Ordered Materials”, Chem. Mater. 16, 1747 (2004)
    [122] S. Nishimura, A. Shishido, “Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas”, Appl. Phys. Lett. 81, 4532 (2002)
    [123] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, “Direct preparation of anatase TiO2 nanotubes in porous alumina membranes”, J. Mater. Chem. 9, 2971 (1999)
    [124] S. Yamanaka, T. Hamaguchi, “Fabrication of oxide nanohole arrays by a liquid phase deposition method”, J. Alloys Compd. 373, 312 (2004)
    [125] L. Miao, S. Tanemura, S. C. Toh, K. Kaneko, M. Tanemura, “Heating-sol–gel template process for the growth of TiO2 nanorods with rutile and anatase structure”, Appl.Surf. Sci., 238, 175 (2004)
    [126] D. V. Taylor, D. Damjanovic, “Piezoelectric properties of rhombohedral Pb(Zr,Ti)O3 thin films with (100), (111), and ‘‘random’’ crystallographic orientation”, Appl. Phys. Lett., 76, 1615 (2000)
    [127] P. Harris, “Carbon nanotubes and related structures: New materials for the twenty-first century”, Cambridge University Press: Cambridge. U. K. (2001)
    [128] M. J. Pender, L. A. Sowards, J. D. Hartgerink, M. O. Stone, R. R. Naik, “Peptide-mediated formation of single wall carbon nanotube composites”, Nano. Lett., 6, 40 (2006)
    [129] W. Fan, L. Gao, J. Sun, “Anatase TiO2-coated multi-wall carbon nanotubes with the vapor phase method”, J. Am. Ceram. Soc, 89, 731 (2006)
    [130] Y. C. Chen, S. S. Jan, J. C. Chou, “Temperature effects on the characteristics of hydrogen ion-sensitive field effect transistors with sol-gel derived lead titanate gates”, Anal. Chimica Acta, 516, 43 (2004).
    [131] S. S. Jan, Y. C. Chen, J. C. Chou, C. C. cheng, C. T. Lu, “Nonideal factors of ion-sensitive filed effect transistor with lead titanate gate”, J. J. Appl. Phys., 41, 6927, (2002)
    [132] E. A. Whitsitt, A. R. Barron, “Silica coated single walled carbon nanotubes”, Nano. Lett., 3, 681 (2003)
    [133] J. Sun, L. Gao, “Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation”, Carbon, 41, 1063 (2003)
    [134] A. Hirsh, “Functionalization of single walled carbon nanotubes”, Angew. Chem. Int. Ed., 41, 1853 (2002)
    [135] Y. Shan, L. Gao, “In situ coating carbon nanotubes with wurtzite ZnS nanocrystals”, J. Am. Ceram. Soc., 89, 759 (2006)
    [136] 蔡淑慧, “ 拉曼光譜在奈米碳管檢測上之應用”,奈米通訊,第十二卷第二期,47 (2005)
    [137] F. Turistra, J. L. Koening, “Raman spectrum of graphite”, J. Chem. Phys., 53, 1126 (1970)
    [138] M. Burghard, “Electric and vibrational properties of chemically modified single walled carbon nanotubes”, Surf. Sci. Rep., 58, 1 (2005)
    [139] A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, R. Saito, “ G-band resonant Raman study of 62 isolated single-wall carbon nanotubes ”, Phys. Rev. B, 65, 155412 (2002)
    [140] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, “Nanotubes molecular wires as chemical sensors”, Science, 287, 622 (2000)
    [141] P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes”, Science, 287, 1801 (2000)
    [142] M. Shim, T. Ozel, A. Gaur, C. Wang, “Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption”, J. Am. Chem. Soc., 128, 7522 (2006)

    [143] N. O. V. Plank, G. A. Forrest, R. Cheung, A. J. Alexander, “Electronic properties of n-type carbon nanotubes prepared by CF4 plasma fluorination and amino functionalizatio”, J. Phys. Chem., 109, 22096 (2005)
    [144] J. F. Scott, C. A. Paz de Araujo, “Ferroelectric memories”, Science, 246, 1400 (1989)
    [145] D. L. Polla, “Characterization of PZT thin films for micromotors”, Microelect. Eng., 29, 51 (1995)
    [146] J. S. Vartuli, M. Özenbas, C.-M. Chun, M. Trau, I. A. Aksay, “Micropatterned lead zicornium titanate thin films”, J. Mater. Res., 18, 1259 (2003)
    [147] C. R. Martin, I. A. Aksay, “Submicrometer-scale patterning of ceramic thin films”, J. Electroceramics, 12, 53 (2004)
    [148] C. R. Martin, I. A. Aksay, “Microchannel molding: a soft lithography-inspired approach to micrometer-scale patterning”, J. Mater. Res., 20, 1995 (2005)
    [149] Y. L. Loo, R. L. Willett, K. W. Baldwin, J. A. Rogers, “High-resolution transfer printing on GaAs surface using alkane dithiol monolayer”, J. Vac. Sci. Technol. B, 20, 2853 (2002)
    [150] K. Felmet, Y. L. Loo, Y. Sun, “ Patterning of conductive copper by nanotransfer printing”, Appl. Phys. Lett, 85, 3316 (2004)
    [151] T. Cao, Q. Xu, A. Winkleman, G. M. Whitesides, “Fabrication of Thin, Metallic Films along the Sidewalls of a Topographically Patterned Stamp and Their Application in Charge Printing”, Small, 1, 1191 (2005)
    [152] J. Park, P. T. Hammond, “Multilayer transfer printing for polyelectrolyte multilayer patterning: direct transfer of layer by layer assembled mircopatterned thin film”, Adv. Mater., 16, 520 (2004)
    [153] H. Jang, S. Kim, J. Cho, K. Char, “Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels”, Korea Australia Rheology Journal, 15, 1 (2003)
    [154] H. Strohm, P. Loebmann, “Liquid phase deposition of TiO2 on polystyrene latex particles functionalized by adsorption of polyelectrolytes”, Chem. Mater., 17, 6772 (2005)

    下載圖示 校內:2008-10-09公開
    校外:2008-10-09公開
    QR CODE