簡易檢索 / 詳目顯示

研究生: 吳崇安
Wu, Chung-An
論文名稱: 溫度及應變速率在純鈦撞擊特性及顯微結構上之效應
Effects of temperature and strain rate on the impact properties and microstructure characteristics of pure titanium
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 144
中文關鍵詞: 純鈦霍普金森桿低溫高速撞擊絕熱剪切帶差排
外文關鍵詞: pure titanium, split-Hopkinson bar, high strain rate, dislocation density
相關次數: 點閱:176下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是探討純鈦金屬在不同溫度及應變速率下之撞擊特性與微觀結構分析。利用壓縮式霍普金森桿撞擊試驗機(Hopkinson bar)及加溫裝置,分別於應變速率1000 s-1、3000 s-1和5000s-1及實驗環境溫度-100℃、25℃、800℃各條件下,進行純鈦之高速撞擊變形,以分析材料在塑變形為中巨觀與微觀結構變化,並導入構成方程式以描述材料之應力應變關係。
    實驗結果顯示,在相同的溫度下,塑流應力值、加工硬化率及應變速率敏感性係數皆隨應變速率增加而上升;而當固定應變速率時,其塑流應力值、加工硬化率、應變速率敏感性係數則會隨溫度之增加而下降,而熱活化體積則是隨著溫度上升而增加。溫度敏感性係數則隨應變速率和應變量的上升而增加。可藉由Zerilli-Armstrong HCP構成方程式,針對純鈦不同溫度及應變速率下之塑變行為作準確的預測及描述。
    在光學式顯微鏡下觀察可得純鈦金屬有絕熱剪切帶之形成與晶粒組織形貌改變,兩者皆受到溫度與應變速率的影響。而剪切帶伴隨著裂縫生成與結合,是導致材料發生破壞的主要原因。在微觀結構方面,由掃描式電子顯微鏡分析破壞面下,可觀察到不同區域分別會有代表延性破壞的韌窩及瘤狀物形貌,以及代表脆性破壞的劈裂形貌;另在穿透式電子顯微鏡觀察下則可發現差排密度隨著應變速率上升而上升,隨著溫度上升而下降。最後結合巨觀與微觀之結果可發現塑流應力值與差排密度有重要之相關性。

    In this study, dynamic impact response and microstructural characteristics of pure titanium were investigated using a compressive split-Hopkinson bar. The specimens were deformed at different temperatures of -100ºC, 25ºC, 800ºC under strain rates of 1000s-1, 3000s-1 and 5000 s-1, respectively. The results reveal that the mechanical properties and microstructures of pure titanium were greatly affected by temperature and strain rate. At a constant temperature, the flow stress, work hardening rate, and strain rate sensitivity increase with increasing strain rate, but the thermal activation volume and activation energy decrease with the increasing strain rate. However, at a constant strain rate, flow stress, work hardening rate, strain rate sensitivity, and temperature sensitivity decrease but the thermal activation volume and activation energy increase with increasing temperature. The Zerilli-Armstrong model is shown to provide an adequate description of the stress-strain response of pure titanium specimens under the current testing conditions. Microstructural observations shown that the deformed grain of pure titanium are strongly dependent on strain rate. SEM fracture analysis indicates that the fracture feature are dominated by dimple, cleavage and knobble at different fracture area. Furthermore, according to the microscopic results, the relationship between the dislocation density and flow stress can be expressed using the Bailey-Hirsch equation.
    Key words: pure titanium, split-Hopkinson bar, high strain rate, dislocation density

    中文摘要 I ABSTRACT II 誌謝 VII 總目錄 VIII 表目錄 XI 圖目錄 XII 符號說明 XX 第一章 前言 1 第二章理論與文獻回顧 3 2-1鈦之介紹 3 2-2 塑性變形之機械測試類別 4 2-3 一維波傳理論 5 2-4 霍普金森撞擊試驗機之原理 6 2-5 材料塑性變形行為 8 2-5-1恆溫機構 9 2-5-2熱活化機制 10 2-5-3差排黏滯機制 11 2-6 材料組構方程式 12 2-6-1Ludwik equation (1927)[17, 18] 12 2-6-2 Sokolosky(1948) & Malvern(1951)模式[17] 12 2-6-3Johnson-Cook方程式(1983)[19-21] 13 2-6-4 Zerilli-Armstrong方程式(1987)[19, 22, 23] 13 第三章 實驗方法及步驟 22 3-1實驗流程 22 3-2實驗儀器與設備 22 3-2-1CNC放電加工線切割機 22 3-2-2動態機械性質測試系統:霍普金森撞擊試驗機 22 3-2-3加熱裝置 24 3-2-4金相研磨拋光機 24 3-2-5鑽石刀片切割機 25 3-2-6 光學顯微鏡 (OM) 25 3-2-7 掃描式電子顯微鏡 (SEM) 25 3-2-8雙噴式電解拋光機 26 3-2-9穿透式電子顯微鏡 (TEM) 27 3-3 實驗步驟 27 3-3-1實驗試件製備 27 3-3-2動態衝擊試驗 28 3-3-3試件金相之觀察(OM) 28 3-3-4 掃描式電子顯微鏡(SEM)試片製備 29 3-3-5穿透式電子顯微鏡(TEM)試片製備 29 第四章實驗結果與討論 32 4-1應力-應變曲線 32 4-2加工硬化 32 4-3應變速率敏感性係數 34 4-4熱活化體積 35 4-5活化能 36 4-6溫度敏感性係數 37 4-7理論溫升量 38 4-8材料構成方程式 39 4-9應變速率與溫度之綜合關係 40 4-9光學顯微鏡金相組織觀察(OM) 41 4-10掃描式電子顯微鏡破斷面觀察(SEM) 42 4-11穿透式電子顯微鏡微觀結構分析(TEM) 43 第五章結論 136 參考文獻 139

    [1] M. Niinomi, T. Kobayashi, O. Toriyama, N. Kawakami, Y. Ishida, and Y. Matsuyama, "Fracture characteristics, microstructure, and tissue reaction of Ti-5Al-2.5 Fe for orthopedic surgery," Metallurgical and Materials Transactions A, vol. 27, pp. 3925-3935, 1996.
    [2] D. Steinberg, S. Cochran, and M. Guinan, "A constitutive model for metals applicable at high‐strain rate," Journal of Applied Physics, vol. 51, pp. 1498-1504, 1980.
    [3] F. E. Hauser, "Techniques for measuring stress-strain relations at high strain rates," Experimental Mechanics, vol. 6, pp. 395-402, 1966.
    [4] R. Woodward, "The interrelation of failure modes observed in the penetration of metallic targets," International Journal of Impact Engineering, vol. 2, pp. 121-129, 1984.
    [5] K. Wang, "The use of titanium for medical applications in the USA," Materials Science and Engineering: A, vol. 213, pp. 134-137, 1996.
    [6] M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens, "Structure and properties of titanium and titanium alloys," Titanium and Titanium Alloys: Fundamentals and Applications, pp. 1-36, 2003.
    [7] M. Niinomi, "Mechanical properties of biomedical titanium alloys," Materials Science and Engineering: A, vol. 243, pp. 231-236, 1998.
    [8] M. J. Donachie, Titanium: a technical guide: ASM international, 2000.
    [9] G. Welsch, R. Boyer, and E. Collings, Materials properties handbook: titanium alloys: ASM international, 1993.
    [10] J. Holt and Z. Munir, "Combustion synthesis of titanium carbide: theory and experiment," Journal of Materials Science, vol. 21, pp. 251-259, 1986.
    [11] D. Curran, L. Seaman, and D. Shockey, "Linking dynamic fracture to microstructural processes," in Shock Waves and High-Strain-Rate Phenomena in Metals, ed: Springer, 1981, pp. 129-167.
    [12] U. Lindholm and L. Yeakley, "High strain-rate testing: tension and compression," Experimental Mechanics, vol. 8, pp. 1-9, 1968.
    [13] W.-S. Lee and C.-F. Lin, "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures," Materials Science and Engineering: A, vol. 241, pp. 48-59, 1998.
    [14] J. Fagbulu and O. Ajaja, "Dislocation distributions and creep mechanisms," Journal of materials science letters, vol. 6, pp. 894-896, 1987.
    [15] D. Klahn, A. Mukherjee, and J. Dorn, "STRAIN-RATE EFFECTS," California Univ., Berkeley. Lawrence Radiation Lab.1970.
    [16] J. Campbell and A. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading," Journal of the Mechanics and Physics of Solids, vol. 18, pp. 43-63, 1970.
    [17] J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel," Philosophical Magazine, vol. 21, pp. 63-82, 1970.
    [18] A. Seeger, "CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of fcc crystals," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 46, pp. 1194-1217, 1955.
    [19] W. Ferguson, A. Kumar, and J. Dorn, "Dislocation damping in aluminum at high strain rates," Journal of Applied Physics, vol. 38, pp. 1863-1869, 1967.
    [20] D. Klahn, A. Mukherjee, and J. Dorn, "Proceedings of the Second International Conference on the Strength of Metals and Alloys," 1970.
    [21] B. Dodd, "Adiabatic shear localization: occurrence, theories, and applications," 1992.
    [22] Z. Gronostajski, "The constitutive equations for FEM analysis," Journal of Materials Processing Technology, vol. 106, pp. 40-44, 2000.
    [23] L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study," Journal of materials processing technology, vol. 182, pp. 319-326, 2007.
    [24] D. Umbrello, R. M’saoubi, and J. Outeiro, "The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel," International Journal of Machine Tools and Manufacture, vol. 47, pp. 462-470, 2007.
    [25] U. Andrade, M. Meyers, and A. Chokshi, "Constitutive description of work-and shock-hardened copper," Scripta metallurgica et materialia, vol. 30, pp. 933-938, 1994.
    [26] F. J. Zerilli and R. W. Armstrong, "Constitutive equation for HCP metals and high strength alloy steels," High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, pp. 121-126, 1995.
    [27] F. J. Zerilli and R. W. Armstrong, "Dislocation‐mechanics‐based constitutive relations for material dynamics calculations," Journal of Applied Physics, vol. 61, pp. 1816-1825, 1987.
    [28] J. Murray and H. Wriedt, "The O− Ti (oxygen-titanium) system," Journal of Phase Equilibria, vol. 8, pp. 148-165, 1987.
    [29] H. Conrad, "Thermally activated deformation of metals," JOM, vol. 16, pp. 582-588, 1964.
    [30] M. Meyers, D. Benson, O. Vöhringer, B. Kad, Q. Xue, and H.-H. Fu, "Constitutive description of dynamic deformation: physically-based mechanisms," Materials Science and Engineering: A, vol. 322, pp. 194-216, 2002.
    [31] W.-B. Lee, C.-Y. Lee, W.-S. Chang, Y.-M. Yeon, and S.-B. Jung, "Microstructural investigation of friction stir welded pure titanium," Materials Letters, vol. 59, pp. 3315-3318, 2005.
    [32] D. R. Chichili, K. Ramesh, and K. J. Hemker, "Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution," Journal of the Mechanics and Physics of Solids, vol. 52, pp. 1889-1909, 2004.
    [33] B. Viguier, "Dislocation densities and strain hardening rate in some intermetallic compounds," Materials Science and Engineering: A, vol. 349, pp. 132-135, 2003.
    [34] S. Esmaeili, L. Cheng, A. Deschamps, D. Lloyd, and W. Poole, "The deformation behaviour of AA6111 as a function of temperature and precipitation state," Materials Science and Engineering: A, vol. 319, pp. 461-465, 2001.
    [35] D. Chu and J. Morris, "The influence of microstructure on work hardening in aluminum," Acta materialia, vol. 44, pp. 2599-2610, 1996.
    [36] J. Harding, "Effect of temperature and strain rate on strength and ductility of four alloy steels," Metals Technology, vol. 4, pp. 6-16, 1977.
    [37] L. Shi and D. Northwood, "The mechanical behavior of an AISI type 310 stainless steel," Acta metallurgica et materialia, vol. 43, pp. 453-460, 1995.
    [38] P. Lefranc, V. Doquet, M. Gerland, and C. Sarrazin-Baudoux, "Nucleation of cracks from shear-induced cavities in an α/β titanium alloy in fatigue, room-temperature creep and dwell-fatigue," Acta Materialia, vol. 56, pp. 4450-4457, 2008.
    [39] U. Lindholm and L. Yeakley, "Dynamic deformation of single and polycrystalline aluminium†," Journal of the Mechanics and Physics of Solids, vol. 13, pp. 41-53, 1965.
    [40] J. Lifshitz and H. Leber, "Data processing in the split Hopkinson pressure bar tests," International Journal of Impact Engineering, vol. 15, pp. 723-733, 1994.
    [41] B. Dodd and Y. Bai, "Ductile fracture and ductility," 1987.
    [42] L. Bolzoni, E. M. Ruiz-Navas, and E. Gordo, "Influence of sintering parameters on the properties of powder metallurgy Ti–3Al–2.5 V alloy," Materials characterization, vol. 84, pp. 48-57, 2013.
    [43] Q. Li, Y. Xu, and M. Bassim, "Dynamic mechanical behavior of pure titanium," Journal of Materials Processing Technology, vol. 155, pp. 1889-1892, 2004.
    [44] J. Jonas, C. Sellars, and W. M. Tegart, "Strength and structure under hot-working conditions," Metallurgical Reviews, vol. 14, pp. 1-24, 1969.
    [45] L. Farbaniec, A. Abdul-Latif, J. Gubicza, and G. Dirras, "Ultrafine-grained nickel refined by dislocation activities at intermediate strain rate impact: deformation microstructure and mechanical properties," Journal of Materials Science, vol. 47, pp. 7932-7938, 2012.
    [46] W. Cui, Z. Jin, A. Guo, and L. Zhou, "High temperature deformation behavior of α+ β-type biomedical titanium alloy Ti–6Al–7Nb," Materials science and engineering: A, vol. 499, pp. 252-256, 2009.
    [47] M. E. Backman and S. A. Finnegan, "The propagation of adiabatic shear," in Metallurgical Effects at High Strain Rates, ed: Springer, 1973, pp. 531-543.
    [48] W.-S. Lee and C.-F. Lin, "Effects of prestrain and strain rate on dynamic deformation characteristics of 304L stainless steel: Part 1—Mechanical behaviour," Materials science and technology, vol. 18, pp. 869-876, 2002.
    [49] J. H. Giovanola, "Adiabatic shear banding under pure shear loading part ii: fractographic and metallographic observations," Mechanics of Materials, vol. 7, pp. 73-87, 1988.
    [50] P. Partridge, "The crystallography and deformation modes of hexagonal close-packed metals," Metallurgical reviews, vol. 12, pp. 169-194, 1967.
    [51] R. Ham, "The determination of dislocation densities in thin films," Philosophical Magazine, vol. 6, pp. 1183-1184, 1961.
    [52] Y. Tomota, P. Lukas, S. Harjo, J. Park, N. Tsuchida, and D. Neov, "In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation," Acta materialia, vol. 51, pp. 819-830, 2003.
    [53] Y. G. Ko, D. H. Shin, K.-T. Park, and C. S. Lee, "An analysis of the strain hardening behavior of ultra-fine grain pure titanium," Scripta Materialia, vol. 54, pp. 1785-1789, 2006.
    [54] J. Bailey and P. Hirsch, "The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver," Philosophical Magazine, vol. 5, pp. 485-497, 1960.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE