| 研究生: |
馬成驊 Ma, Cheng-Hua |
|---|---|
| 論文名稱: |
時頻域方法應用於聲波非線性係數及特性分析之研究 Application of time – frequency analysis for nonlinear coefficient and properties |
| 指導教授: |
涂季平
Too, Gee-Pinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 造船及船舶機械工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 小波轉換 、非平穩訊號 、聲波非線性係數 、時頻分析 |
| 外文關鍵詞: | nonstationary signal, acoustics nonlinear coefficient, wavelet transform., time – frequency analysis |
| 相關次數: | 點閱:83 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非線性係數及非線性特性在稍早之研究中均以頻域分析方法為主導,本研究以時頻域分析方法,探討此非線性係數及特性,在不同分析方法下之適用性。傳統訊號分析法不外乎是快速傅立葉轉換,但要處理的訊號是非平穩訊號時,需使用時頻分析的方法,以同時得知訊號時間和頻率的資訊。因此本文中使用小波轉換來分析聲波之非線性訊號,並比較各方法分析之結果及適用性。本研究之目的在於希望以各種時頻域分析方法去對聲波的非線性現象作分析,探討在各種訊號分析方法下,多少週期之聲音脈衝發射波( tone burst ) ,才能準確的預估非線性係數及非線性特性。
We applied the frequency analysis for nonlinear coefficient and properties early in the study. The time – frequency analysis is applied for nonlinear coefficient and properties in this study. We will discuss the results for different time – frequency analysis methods. The fast Fourier transform is a traditional way to analyze the signal. But when we handle the nonstationary signal, we need the time – frequency analysis for obtaining the time information and frequency information from the signal simultaneously. We use the wavelet transform to analyze the nonlinear signal of the tone burst. We then compare the results with different time – frequency analyses. The purpose of the study is to analyze the acoustics nonlinear properties by different time – frequency analyses. We will use several signal processing to provide examples of how many cycles tone burst can exactly predict the nonlinear coefficient and properties.
【1】J.C. Goswamin, and A.K. Chan, “ Fundamentals of wavelets : theory, algorithms, and applications ”, John Wiley & Sons, Inc.,1999.
【2】董世芳, 涂季平,”聲波傳遞對液體介質特性參數預估之研究 ”, 國立成功大學造船暨船舶機械工程研究所, 碩士論文, 台灣台南, 民國八十三年六月.
【3】吳健安, 涂季平,”聲波於水中傳遞之非線性特性之研究 ”, 國立成功大學造船暨船舶機械工程研究所, 碩士論文, 台灣台南, 民國八十六年六月.
【4】S. Saito, “ Measurement of the acoustic nonlinearity parameter in liquid media using focused ultrasound ”, J. Acoustics. Soc. Am. 93(1), Jan. , 1993.
【5】N. Endoh and H. Kibukawa, “ Measurement of nonlinearity parameter in liquid-like media using Time-Of-Flight Method under small Pressure-Jump condition ”, 13th ISNA, Advances in Nonlinear Acoustics, pp. 358-363, 1993.
【6】V. V. Sokolov, “ Determination of the Nonlinearity Parameter of Magnetic Fluids ”, 13th ISNA, Advances in Nonlinear Acoustics, pp. 382-386, 1993.
【7】X. F. Gong, Z. M. Zhu, B. Fan, D. Zhang, “ Parametric effect and nonlinear parameter in biological media ”, 12th ISNA, Advances in Nonlinear Acoustics, pp. 397-401, 1992.
【8】J. M. Burgers, “ A mathematical model illustrating the theory of turbulence “ ,Advances in Applied Mechanics, Vol. 1, Academic press, New York ,171-199, 1948.
【9】E. A. Zaboloyskaya and R. V. Khokhlov, “ Quasi-plane waves in the nonlinear acoustics of confined beams. “, Sov. Phy. Acoust. 15(1), 35-40, 1969.
【10】E. A. Zaboloyskaya and R. V. Khokhlov, “ Convergent and divergent sound beams in nonlinear media “ , Sov. Phy. Acoust. 16(1), 39-42, 1970.
【11】V. P. Kuznetsov, “ Equation of nonlinear acoustics ”, Sov. Phys. Acoust. 16(4), 467-470, 1971.
【12】N. S. Bakhvalov, Y. M. Zhlieikin, E. A. Zabolotskaya, and R. V. Khokhlov, “ Nonlinear propagation of a sound beam in a nondissipative medium ”, Sov. Phys. Acoustic. 22(4), 272-274(1976) .
【13】N. S. Bakhvalov, Y. M. Zhlieikin, E. A. Zabolotskaya, and R. V. Khokhlov, “ Propagation of finite amplitude sound beams in dissipative medium ”, Sov. Phys. Acoustic. 24(4), 271-275(1978).
【14】N. S. Bakhvalov, Y. M. Zhlieikin, E. A. Zabolotskaya, and R. V. Khokhlov, “ Harmonic generation in sound beams ”, Sov. Phys. Acoustic. 25(2), 101-106(1979).
【15】S. I. Aanonsen T. Barkave, J. Naze Tjotta and S. Tjotta, “ Distortion and harmonic generation in the nearfield of a finite amplitude sound beam ”, J. Acoust. Soc. Am. 75, 749-768, 1984.
【16】B. E. McDonald and Ambrosiano, “ High order upwind flux methods for scalar hyperbolic conservation laws ”, J. Comp. Phys. , 56, 448-460, 1984.
【17】B. E. McDonald and W. A. Kuperman, “ The wave field of a weak shock at a caustic ”, Proc., IMACS Symp. On Computer Methods for Partial Differential Equations, Edited by R. Vichnevetsky and R. Stepleman, Lehigh Univ. 1984.
【18】B. E. McDonald and W. A. Kuperman, “ Time Domain solution of the parabolic equation including nonlinearity ”, Comp. & Math. W. Appl. 11, 843-851, 1985.
【19】B. E. McDonald and W. A. Kuperman, “ Time domain formation for pulse propagation including nonlinear behavior at acoustic ”, J. Acoust. Soc. Am. 81(2), 1406-1417, 1987.
【20】G. P. Too and J. H. Ginsberg, “ Nonlinear progressive wave equation model for transient and steady-state sound beams ”, J. Acoust. Soc. Am. 91(1), 59-68(1992) .
【21】李昔聰, 涂季平,”高強圓形聲束之損耗影響“, 國立成功大學造船暨船舶機械工程研究所, 碩士論文, 台灣台南, 民國八十二年六月.
【22】Cooley, J. W.,and J. W. Tukey,” An algorithm for the machine calculation of complex Fourier series,” Mathematics of Computation, Vol. 19, No.90, pp. 297-301, 1965.
【23】D. Gabor. “ Thory of communication. ”, J. IEE. 93: 429-457, 1946.
【24】Stéphane Mallat, “ A Wavelet Tour of Signal Processing ”, Academic Press, USA, 1998.
【25】Ingrid Daubechies, “ Ten Lectures on Wavelets ”, Society for Industrial and Applied Mathematics, U.S.A., 1992.
【26】Yu Kaiping, Ye Jiyuan, Zou Jingxiang, Yang Bingyuan, Yang Hua, “ Missile flutter experiment and data analysis using wavelet transform ”, Journal of sound and vibration, to be published, 2002.
【27】E. A. Zaboloyskaya and R. V. Khokhlov, “ Quasi-plane waves in the nonlinear acoustics of confined beams ”, Sov. Phy. Acoust. 15(1), 35-40, 1969.
【28】E. A. Zaboloyskaya and R. V. Khokhlov, “ Convergent and divergent sound beams in nonlinear media ”, Sov. Phy. Acoust. 16(1), 39-42, 1970.
【29】Thomas P. Krauss, Loren Shure, John N. Little,” Signal Processing Toolbox User’s Guide “, The Math Works, Inc., U.S.A., 1995.
【30】E. O. Brigham, Jr., 黎文明譯著,”The Fast Fourier Transform ”, 復漢出版社, 台灣, 民八十年.
【31】Alan V. Oppenheim,” Discrete-Time Signal Processing “, Prentice Hall, U.S.A., 1999.
【32】Albert Boggess, and Francis J. Narcowich, “ A First Course in Wavelets with Fourier Analysis ”, Prentice Hall, United States of America, 2001.
【33】National Instruments Corporation, “ Signal Processing Toolset Reference Manual ”, National Instruments Corporation, U.S.A., 1998.