| 研究生: |
劉紘旭 Liou, Hong-Hsu |
|---|---|
| 論文名稱: |
利用順滑模態控制之氣動式單足彈跳機器人的彈跳控制 Hopping Control of a Pneumatic Single-Legged Hopping Robot using Sliding Mode Control |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 順滑模態控制 、氣動式單足彈跳機器人 、彈跳控制 |
| 外文關鍵詞: | sliding mode control, pneumatic single-legged robot, hopping control |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在以二階順滑模態控制設計並實現氣動式單足彈跳機器人的垂直彈跳控制。首先分析線性質塊-彈簧系統之能量特性再將其運用在氣壓缸垂直彈跳系統之能量分析上以決定彈跳週期及高度,並建立整體系統的數學模型,接著設計二階順滑模態控制之超螺旋控制以控制上氣室流量,再設計二階順滑模態控制之次最佳化控制以控制下氣室流量,並利用MATLAB/Siumlink模擬可行性。在實作上,以比例閥為致動器,先以最小平方法校正比例閥的係數,再以磁性讀頭及電阻尺量測氣壓缸缸體與氣壓缸活塞桿行程以提供回授控制之用,利用數位訊號處理器TMS320F2812為控制核心,以C語言實現控制演算法。最後,由模擬與實驗結果驗證了所設計之順滑模態控制器可有效地達到氣動式單足機器人的彈跳控制。
SUMMARY
The aim of this thesis is to design and implement the vertical pneumatic single-legged hopping robot using second order sliding mode control. First, analysis the energy of a linear mass–spring system is given and this energy analysis is used to determine the hopping cycle and height for a pneumatic vertical hopping robot. The mathematical model of the system is derived Super-twisting control of the second order sliding mode control is designed to control the mass flow rate for the upper chamber and sub-optimal control of the second order sliding mode control is designed to control the mass flow rate of the lower chamber. The simulation studies are conducted in MATLAB/Simulink. In experiments, a proportional valve is use for control actuation. The coefficients of the proportional valve is calibrated by the least-squares method. For feedback control, the strokes of pneumatic cylinder rod and the hopping height of the cylinder are measured by a potentiometer and a magnetic encoder, respectively. The control schemes are implemented on a digital signals processor (TMS320F2812) from Texas Instruments using C language. From simulation and experimental results, it is show that the designed sliding mode controllers can achieve effective hopping control of the pneumatic single-legged robot.
[1] M. H. Raibert, Legged Robots That Balance, MIT Press, Cambridge, 1986.
[2] M. H. Raibert and H. B. Brown, “Experiments in Balance with a 2D One-legged Hopping Machine,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 106, pp. 75-81, Mar. 1984.
[3] M. H. Raibert, H. B. Brown, and M. Chepponis, “Experiments in Balance with a 3D One-legged Hopping Machine,” International Journal of Robotics Research, Vol. 3, No. 2, pp. 75-92, 1984.
[4] A. Sayyad, B. Seth, and P. Seshu, “Single-legged Hopping Robotics Research - A Review,” Robotica, Vol. 25, No. 5, pp. 587-613, 2007.
[5] K. Matsuoka, “A Mechanical Model of Repetitive Hopping Movements,” Biomechanisms, Vol. 5, pp. 251-258, 1980.
[6] P. Gregorio, M. Ahmadi, and M. Buehler, “Design, Control, and Energetics of an Electrically Actuated Legged Robot,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 27, No. 4, pp. 626-634, Aug. 1997.
[7] A. Levant, “Sliding Order and Sliding Accuracy in Sliding Mode Control,” International Journal of Control, Vol. 58, No. 6, pp. 1247-1263, 1993.
[8] A. Levant, “Higher-order Sliding Modes, Differentiation and Output Feedback Control,” International Journal of Control, Vol. 76, No. 9-10, pp. 924-941, 2003.
[9] M. H. Raibert, “Running with Symmetry,” International Journal of Robotics Research, Vol. 5, No. 4, pp. 45-61, 1986.
[10] M. H. Raibert, M. Chepponis, and H. B. Jr. Brown, “Running on Four Legs as though They Were One,” IEEE Journal of Robotics and Automation, Vol. 2, No. 2, pp. 70-82, Jun. 1986.
[11] J. K. Hodgins, “Biped Gait Transitions,” Proceedings of 1991 IEEE International Conference on Robotics and Automation, 1991, pp. 2092-2097.
[12] J. Vermeulen, D. Lefeber, and B. Verrelst, “Control of Foot Placement, Forward Velocity and Body Orientation of a One-legged Hopping Robot,” Robotica, Vol. 21, No. 1, pp. 45-57, 2003.
[13] E. Richer and Y. Hurmuzlu, “A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 3, pp. 416-425, Sep. 2000.
[14] E. Richer and Y. Hurmuzlu, “High Performance Pneumatic Force Actuator System: Part II—Nonlinear Controller Design,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 3, pp. 426-434, Sep. 2000.
[15] Y. Zhu and E. J. Barth, “An Energetic Control Methodology for Exploiting the Passive Dynamics of Pneumatically Actuated Hopping,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 130, No. 4, Jul. 2008.
[16] V. I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin, 1992.
[17] K. D. Young, V. I. Utkin, and U. Ozguner, “A Control Engineer’s Guide to Sliding Mode Control,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 3, pp. 328-342, May 1999.
[18] S.V. Emelyanov, S. K. Korovin, and L.V. Levantovsky, “Higher Order Sliding Regimes in the Binary Control Systems,” Soviet Physics, Doklady, Vol. 31, pp. 291-293, 1986.
[19] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and Observation, Springer, New York, 2014.
[20] G. Bartolini, A. Ferrara, and E. Usai, “Chattering Avoidance by Second-Order Sliding Mode Control,” IEEE Transactions on Automatic Control, Vol. 43, No. 2, pp. 241-246, 1998.
[21] A. Levant, “Quasi-Continuous High-Order Sliding-Mode Controllers,” IEEE Transactions on Automatic Control, Vol. 50, No.11, pp. 1812-1816, 2006.
[22] A. Levant, “Robust Exact Differentiation via Sliding Mode Technique,” Automatica, Vol. 34, No. 3, pp. 379-384, 1998.
[23] P. Beater, Pneumatic Drives - System Design, Modelling and Control, Springer, Berlin, 2007.
[24] G. J. Van Wylen, R. E. Sonntag, and C. Borgnakke. Fundamentals of Classical Thermodynamics, John Wiley & Sons, New York, 1994.
[25] H. Kazerooni, “Design and Analysis of Pneumatic Force Generators for Mobile Robotic Systems.” IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 4, pp. 411-418, Aug. 2005.
[26] G. P. Sutton and D. M. Ross, Rocket Propulsion Elements, John Wiley & Sons, New York, 2000.
[27] D. McCloy and H. R. Martin, “Control of Fluid Power: Analysis and Design,” Halsted Press, New York, 1980.
[28] A. Isidori, Nonlinear Control Systems, Springer, London, 1995.
[29] 許智韋,「二階順滑模態平衡控制之倒單擺系統」,國立成功大學工程科學系碩士論文,民國一○三年一月。
[30] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, CRC Press, Boca Raton, 1999.
[31] 劉淵銘,「奈米精度氣壓-壓電混合驅動之X-Y-Z三軸長行程定位系統設計與適應性滑動控制」,國立台灣科技大學自動化及控制研究所碩士論文,民國九十六年七月。
[32] DSBC Datasheet, FESTO, 2017.
[33] MTW-1038 Datasheet, 台灣米庭恩有限公司, 2013.
[34] MPYE Datasheet, FESTO, 2017.
[35] JPT-131LJ, 久德電子有限公司, 2013.
[36] FSR406 DataSheet, Interlink Electronics, 2010.
[37] ARC Datasheet, CHIEFTEK PRECISION CO., LTD., 2017.
[38] ME1 Datasheet, CHIEFTEK PRECISION CO., LTD., 2017.
[39] AST-22 Datasheet, PUMA, 2004.
[40] 優力膠 https://tw.misumi-ec.com/pdf/fa/2015/p2_435.pdf
[41] TMS320F2812 Digital Signal Processor Data Manual, Texas Instruments, 2011.
[42] ADS774 DataSheet, Texas Instruments, 1995
[43] ADG506 DataSheet, ANALOG DEVICES, Inc, 1998.
[44] AD5725 DataSheet, ANALOG DEVICES, Inc, 2013.
[45] 吳昭儀,「類比式編碼器之細分割與解析度提升」,國立成功大學工程科學系碩士論文,民國一○五年七月。
[46] 洪介仁,「車與桿倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年七月。
校內:2023-07-26公開