| 研究生: |
楊雅嵐 Yang, Ya-Lan |
|---|---|
| 論文名稱: |
成形製程對粗粒徑輕質陶粒砌塊抗壓強度的影響-以粗粒徑為例 The influence of forming process upon the compressive behaviour of lightweight aggregate masonry - large particle - |
| 指導教授: |
葉玉祥
Ye, Yu-Xiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 輕質陶粒砌塊 、成形工法 、配比 、抗壓強度 、破壞模式 |
| 外文關鍵詞: | Lightweight aggregate concrete (LWAC) brick, Formation techniques, Mixture ratio, Compressive strength, Failure mode |
| 相關次數: | 點閱:163 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水庫的壽命隨著淤積狀況逐年下滑,但淤泥本身顆粒極細且含水量高,因此淤泥處置有不少難度,故各式再利用方案之研究也備受重視,其中在各種利用方案裡面燒製為陶粒可100%使用淤泥,且可在淤泥含水量較高的狀態製作,而陶粒本身質輕、多孔等特性使之具有相當的發展性。
本研究以石門水庫淤泥經造粒,由商用旋窯燒製而成之陶粒為研究對象,選用粒徑大於10mm的陶粒,陶粒之密度等級有300、500、700三種,其中300級陶粒為破碎狀,以3種之成形方式震盪加壓成形、模板搗實成形(2小時拆模)與模板搗實成形(24小時拆模)來製作砌塊。配比因子有陶粒密度等級、陶砂體積及水泥量,每個因子有三個等級,共9種配比,每個配比與成形方式各製作3顆試體,共81顆試體,在國立成功大學依據CNS 1232進行抗壓試驗,用以探討粗粒徑陶粒成形方式之影響與配比影響程度。
研究結果發現,製程對砌塊的成形狀態影響甚鉅。震盪加壓成形製程所製作之砌塊尺寸變異最為顯著;連帶地,成形工法及成形品質也影響抗壓強度,其中模板搗實成形(2、24小時拆模)之砌塊抗壓強度均高於震盪加壓成形約50%,且陶粒粒型在震盪加壓成形中有明顯差異,300級陶粒為破碎陶粒,成形狀態相對穩定,而500與700級陶粒因顆粒圓潤表面光滑與砂漿握裹力不佳,故成形較差以致材料強度無法充分發揮。
本研究配比主要變數為陶粒密度、陶砂量與水泥量,在各製程中影響最為顯著者為陶粒密度,陶粒密度越高,砌塊的抗壓強度亦越高;除500級之外。推測原因為500級粒形較為圓潤,故成形狀態差導致強度無法完整發揮。而水泥量與抗壓強度的影響程度低於陶粒密度,其與抗壓強度在三種成形方式中皆呈現正相關,水泥使用量越多則抗壓強度與強重比亦越高,但從試拌的過程中發現,過多的水泥會使拌合料過於黏稠,導致砌塊脫模困難,反而使砌塊成形不佳,進而使材料強度無法完全發揮。陶砂量對抗壓強度影響最不顯著,然而從試拌的過程中發現,砌塊要成形粒料間需能充份握裹,因此仍需一定比例之陶砂。
The life expectancy of a water reservoir will decrease due to sediment accumulation year by year. Because the sediment is fine-grained and exhibits high moisture content, it is difficult to process for further application. Studies about alternative research studies regarding alternate reuse of the sediment have caught more attention. One of the reusing strategies is to produce ceramsite through the ceramic sintering process. This strategy has certain advantages over other reuse methods. Process wise, it can be done while having high moisture content in the sediment, and can use up to 100% of the sediment as a reusable material. As a material ceramsite exhibits engineering properties that are advantageous, such as light weight and porosity. These properties endows the sediment certain potential for application.
This main resource for this study is the ceramsite made from the sediment in the Shi-men Reservoir, which is sintered in a large-scale and industrial rotary kiln. Ceramsite with diameter greater than 10mm are composed of three different density: grade-300, grade-500 and grade-700. Among the three grades, grade-300 reveals to be irregular shaped while the other two are round and smooth. The ceramsite is formed into bricks, by the means of three production techniques, i.e. compression-plus-vibration molding, manual compaction molding (mold removed after 2 hours), manual compaction molding (mold removed after 24 hours). The concrete mixture of the brick is modified based on three factors, i.e. density of the ceramsite, the amount of cement and the am amount of ceramsite sand. With 3 production techniques. Each factor consists of three variables or hierarchies. The tested bricks comprise of 9 mixture ratios which are planned according to experimental design and integrate the three factors. Each type of bricks is composed of 3 specimens. Therefore, the compressive test comprises 81 specimens. The test is carried out based on CNS 1232 in a universal testing system in National Cheng Kung University Compressive tests.
This study are to evaluate the influence of the chosen factors upon the compressive behavior of the lightweight aggregate concrete (LWAC) bricks that the production method immensely affects the formation of the bricks. Bricks molded by using the compression-plus-vibration molding techniques reveals the most variation in terms of size. Subsequently, the production technique and quality affect the compressive strength. The bricks made of manual compaction exhibit approximately 50% higher compressive strength than the specimens from compression-plus-vibration technique. Then, particle’s shape of the ceramsite affects the formation quality of bricks by compression-plus-vibration molding. The irregular shape of grade-300 ceramsite leads to better reliability in terms of formation quality compared to grade 500 and grade 700, whose shape and smooth surface result in worse bonding effect and mechanical properties.
The factors of mixture ratio in this study include ceramsite’s density, the amount of cement and the amount of ceramsite sand. Among them, ceramsite’s density is the most influential for compressive behavior. The higher the density is, the greater compressive strength can be achieved. In such tendency, however, bricks made of grade 500 ceramsite show certain discrepancy. Due to round texture, grade-500 cause the brick to poorly form and inevitably lower capacity in compression. The amount of cement used affects the compressive strength as well. The compressive strength of the brick has positive correlation with the amount of cement. Bricks produced by the three techniques reveal convergent tendency. As the amount of cement increases, the compressive strength and ratio of strength to weight also enhances. However, during mixing the trial batch, the study found that excessive cement slurry results in a viscous mixture. This may arise the difficulty to demold the bricks, cause poor formation and debase the compressive strength of the brick. Regarding the amount of ceramsite sand applied, the specimen does not reveal a significant impact on compressive strength. During the mixing trial batch, however, it should be noted that a certain amount of ceramsite sand is necessary to robustly bond the aggerates.
[1] 中興工程顧問股份有限公司(2008)。石門水庫淤泥多元化處置方案評估規劃 綜合報告。經濟部水利署北區水資源局委託之研究成果報告(編號:096-D-11-27-1-128-00-3)。桃園縣龍潭鄉:經濟部水利署北區水資源局。
[2] 交通部中央氣象局(2017)。地震百問。臺北市:交通部中央氣象局。
檢自:https://scweb.cwb.gov.tw/zh-tw/guidance/faq。
[3] 羅財怡、藍翊友(2011)。輕質混凝土於國道6號石灼巷跨越橋之應用(上)。國道視窗,2011年10月刊,4-5。
檢自:https://www.freeway.gov.tw/Publish.aspx?cnid=1686。
[4] 羅財怡、藍翊友(2011)。輕質混凝土於國道6號石灼巷跨越橋之應用(下)。國道視窗,2011年11月刊,4-5。
檢自:https://www.freeway.gov.tw/Publish.aspx?cnid=1686。
[5] 羅財怡、劉尚豪(2019)。輕質粒料混凝土在國道4號豐原潭子段之應用。國道視窗,2019年4月刊,4-6。
檢自:https://www.freeway.gov.tw/Upload/Html/2019329201/。
[6] 成大建築性能評定中心。特耐牆(76mm)(2017/09/04)。
檢自:http://ckhp.ncku.edu.tw/pls/big5/P_CAPC.SEL(2020/03/21)
[7] 內政部指定評定管理系統。陶粒輕質氣泡混凝土牆板(2020/02/13)。
檢自:http://tabc.hopto.org/FireProof/Default.aspx(2020/03/21)
[8] 內政部指定評定管理系統。璦快得7.5cm中空陶粒牆(2017/02/22)。
檢自:http://tabc.hopto.org/FireProof/Default.aspx(2020/03/21)
[9] 內政部指定評定管理系統。景匠陶粒實心磚防火牆(2018/10/19)。
檢自:http://tabc.hopto.org/FireProof/Default.aspx(2020/03/21)
[10] 鄭文信(2005)。人造輕質骨材混凝土耐久性之研究(未出版之碩士論文)。國立成功大學土木工程研究所,台南市。
[11] 范瑛宏,彭鵬,侯子義(2014)。頁岩陶粒混凝土工作性及強度試驗分析。混凝土與水泥製品。2014(10)。30-33。
[12] 于周平(2014)。粗集料對陶粒混凝土抗壓強度影響的試驗研究。紹興文理學院學報。34(8)。21-25。
[13] 吳輝琴,張騰,淳野楊,周紅梅,彭翰澤(2018)。高性能水泥基陶粒吸音材料的研製。廣西大學學報(自然科學版)。43(1)。86-94。
[14] 吳德燦(2014)。水庫淤泥輕質骨材用於製造透水磚之研究(未出版之碩士論文)。國立臺北科技大學,臺北市。
[15] 范國晃(2011)。輕質混凝土圬工單元工程性質與製造技術之研究(未出版之碩士論文)。國立中興大學,臺中市。
[16] 王慶軒,石云興,屈鐵軍,張燕剛,倪坤,劉偉(2014)。陶粒泡沫混凝土砌塊牆體的熱工性能測試與分析。新型建築材料,2014(12),26-30。
[17] 羅永磊,丁曉燕,項振通,徐明,陳忠範(2015)。振動加壓成型陶粒混凝土砌塊配合比研究。混凝土。2015(4)。137-140。
[18] 李輝煌(2008)。田口方法:品質設計的原理與實務。臺北縣:高立。
[19] 顏聰、黃兆龍主持(2003)。「水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣」分項計畫一:水庫淤泥輕質骨材量產技術研究(內政部建築研究所補助研究報告),未出版。
[20] 王柏閔(2019)。輕質陶粒砌塊的抗壓行為-以細小粒料為例(未出版之碩士論文)。國立成功大學建築研究所,台南市。
[21] 劉怡君(2019)。輕質陶粒砌塊之抗壓行為:以中粒徑粒料為例(未出版之碩士論文)。國立成功大學建築研究所,台南市。