簡易檢索 / 詳目顯示

研究生: 李愉庭
Lee, Yu-Ting
論文名稱: 大空間多目的使用之空調配置與聲學改善策略——以一大學體育場館為例
Strategies for Air Distribution and Acoustics Improvements in an Multi-Purpose Gymnasium: A Case Study
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: 整合設計大空間多目的體育場館建築聲學氣流分布
外文關鍵詞: Integrated design, Multi-purpose, Large gymnasium, Architectural acoustics, Air-let configuration
相關次數: 點閱:253下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大型體育場館為校園常見多目的使用空間,其室容積大,裝修方式以支持體育活動類型基本使用需求為主,室內環境僅考量單一使用目的,實務上雖有多功能使用之實,然建築現況條件較難以支持各類活動類型。
    本研究以國立成功大學中正堂為例,依據中正堂實際活動類型如體育賽事和學生活動需求,以風速與迴響時間控制為首要目標,分析大型體育場館(室容積約在55,000m³以上)轉型多功能空間所需之建築聲學與風口配置條件,透過現場實測與數值模擬,分析現況並提出改善策略。建築聲學以控制迴響時間(T20),及提升各類活動語音、樂音清晰度(C50、C80、STI)為主要目的,分為第一階段室內裝修與第二階段擴聲設備涵蓋範圍與聲場之關係,進行多目的聲學策略提案。再者,大空間受到不同使用行為與佔席分布,空氣條件並不均質,為兼顧羽球場較嚴謹之風速規範與觀眾與運動員舒適度,本研究探討風口配置與氣流場分布(distribution)關係,提出綜合性通風策略滿足體育賽事、學生晚會和大型典禮等實際使用情境,以達到風速、溫度與CO2濃度等氣流場需求。
    搭配現況實測與模擬驗證輔助,在建築聲學策略方面,第一階段在天花鋪設聲學吸音金屬板,成功將迴響時間(500Hz)從5s降至2s,後期分析陣列揚聲器角度涵蓋範圍對聲場均勻度與清晰度之影響,得出各單元揚聲器角度變化較緩者,較能同時支持一樓與二樓觀眾席清晰度與維持空間整體聲能分布均勻度,適合容積比差異大之空間。此外,在氣流場分析中,將體育館主要分成一樓體育場區和二樓上層觀眾席、下層觀眾席共三區,依據使用行為進行分區通風(subzone ventilation),得出各區適合之風口配置,在滿足羽球嚴謹之風速≦0.2 m/s條件下,同時兼顧多目的使用之大型體育館配置策略。
    本研究以大型體育場館為例,同時分析室內聲學環境與氣流場,從現況診斷、模擬再現性確認到策略分析,提出整合設計以支持大空間多目的使用,本研究之操作流程,可做為大型體育場館轉型案例參考。

    This paper proposes an overall strategy for various demands to satisfy diverse occupants in a large, shared space. A large gymnasium in NCKU is selected for the case study. Practical scenarios are concerned. Both acoustic condition and flow distribution are taken into consideration to support differentiated extracurricular events and to guarantee the air velocity for badminton.
    Firstly, field measurements were conducted to diagnose current performance. The reflective interior materials and large volume, approximately 55,000m3, lead to a 5-second reverberation time at 500Hz; thus, make the clarity unsuitable for fundamental use. Besides, current air conditioning systems appear out of order, causing complex flow distribution, which is not suitable for small ball sports.
    In addition, numerical simulations were utilized and validated for further studies. In the acoustic place, this paper focuses on reverberation time control and clarity improving. The results show that T20 is reduced to about 2 seconds (500Hz) after MPPs are implemented, and a favored clarity condition (C50, C80 and STIPA) can be provided after electro-acoustic strategies are installed. On the other hand, this study examines the effectiveness of different air-let configurations to check whether air velocity, temperature and CO2 concentration fit the users’ comfort. The results show that the air velocity is controlled below 0.2m/s for badminton and below 0.35m/s for audience area.
    All in all, this study provides a guidance for accommodating diverse preferences depending on different scenarios for acoustic and flow field in a large gymnasium.

    摘要I 誌謝XIX 目錄XX 表目錄XXII 圖目錄XXIII 第一章 緒論 1 1-1研究背景與動機 1 1-2研究目的 2 (一) 探討大型體育場館多目的聲學設計策略 2 (二) 分析風口配置適用體育氣流場規範提案 2 (三) 綜合討論大空間多目的轉型整合因子設計 2 1-3研究範圍與流程 3 (一) 研究範圍 3 (二) 研究流程 5 第二章 文獻回顧 7 2-1台灣現有大學室內體育館 7 2-2大型體育場館多目的使用 8 2-3大空間聲場 8 (一) 聲場特性與迴響時間 8 (二) 電氣音響系統 11 (三) 客觀聲學參數 11 (四) 電腦輔助模擬工具 17 2-4大空間氣流場 18 (一) 空調配置與設計流程 18 (二) 體育場館空調配置 20 (三) 室內氣流場風速與熱環境評估 22 (四) 電腦輔助模擬工具 24 第三章 研究方法 26 3-1研究對象 26 3-2目標值域選定 29 (一) 建築聲學評估指標 29 (二) 空氣環境評估指標 30 (三) 最低換氣量計算 31 (四) 研究組數與檢索表 35 3-3聲學設備與操作流程 36 (一) 現場量測 36 (二) 數值模擬 37 (三) 量測流程 39 3-4空氣環境設備與操作流程 42 (一) 現場量測 42 (二) 數值模擬 43 第四章 現況分析與模擬實測驗證 47 4-1建築聲學 47 (一) 無指向性點聲源 48 (二) 陣列線聲源 51 4-2氣流場 53 (一) 實測結果 53 (二) 模擬實測驗證與現況分析 55 (三) 羽球場垂直風速 58 (四) 出風口射程分析 59 第五章 多目的空間建築聲學條件 60 5-1觀眾席吸音率 60 5-2策略提案 60 (一) 天花裝修 60 (二) 電氣音響 62 5-3策略小結 72 第六章 大空間之空調設備配置 73 6-1出風配置 75 6-2使用情境與策略 76 (一) 體育賽事 76 (二) 學生晚會 82 (三) 校際典禮 86 6-3策略小結 91 第七章 結論與建議 92 7-1複合策略提案 92 (一) 聲學策略提案 92 (二) 空調策略提案 93 7-2後續研究建議 93 參考文獻 94 中文文獻 94 英文文獻 94

    中文文獻
    1. 全國運動場館資訊網,取自https://iplay.sa.gov.tw/。
    2. 周鼎金編(2012)。建築物理。新北市:裕祥出版社。
    3. 鍾祥璋(2012)。建築吸音材料與隔音材料。北京市:化學工業出版社。
    4. 吳碩賢編(2000)。建築聲學設計原理。北京市:中國建築工業出版社。
    5. 中央氣象局(2010)。中央氣象局1981-2010氣象統計資料,取自www.cwb.gov.tw。
    6. 教育部體育屬(2017)。運動設施規範及分級分類參考手冊。

    英文文獻
    1. Adelman-Larsena N. W., Jeong C. H. & Støfringsdalc B. (2018). Investigation on acceptable reverberation time at various frequency bands in halls that present amplified music, Applied Acoustics, 129, 104-107.
    2. Awbi, H. B. (2017). Ventilation for good indoor air quality and energy efficiency. Energy Procedia, 112, 277-286.
    3. ASHRAE 55: 2004 — Thermal Environmental Condition for Human Occupants. ASHRAE Inc.
    4. Ahmed A. (2012). The acoustical design of the new lecture auditorium, Faculty of Law, Ain Shams University. Ain Shams Engineering Journal, 3(3), 219-235.
    5. Adelman-Larsen, N. W., Thompson E. R. & Gade A. C. (2010). Suitable reverberation time for halls for rock and pop music. The Journal of the Acoustical Society of America, 127(1), 247-255.
    6. ASHRAE Fundamental Handbook, 2009. ASHRAE Inc.
    7. ASHRAE 62.1: 2013 —Ventilation for Acceptable Indoor Air Quality. ASHRAE Inc.
    8. Badminton World Federation (2018). BWF Statutes, Section 5.3.4: Specifications For International Standard Facilities.
    9. Barron, M. (2009). Auditorium acoustics and architectural design. Routledge.
    10. Beranek L. L. (2006). Analysis of Sabine and Eyring equations and their application to concert hall audience and chair absorption. The Journal of the Acoustical Society of America. 120, 1399-1410.
    11. Barron, M. (1993). Auditorium Acoustics and Architectural Design. Spon Press.
    12. Beranek L. L. (1962). Music, Acoustics and Architecture, Wiley, New York, p. 27.
    13. Cao, G., Awbi, H., Yao, R., Fan, Y., Sirén, K., Kosonen, R., & Zhang, J. J. (2014). A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment, 73, 171-186.
    14. Cheng, Y., Niu, J., & Gao, N. (2012). Stratified air distribution systems in a large lecture theatre: A numerical method to optimize thermal comfort and maximize energy saving. Energy and Buildings, 55, 515-525.
    15. Christensen, C. L. (2002). Odeon room acoustics program version 6.0 user manual, industrial, auditorium and combined editions. Kgs. Lyngby, DK: Ørsted DTU.
    16. CIBSE, The Chartered Institution of Building Services Engineers, London
    17. Eric A. L., & Anders M. J. (2010). Diffuse reverberation model for efficient image-source simulation of room impulse responses. IEEE Transactions on Audio, Speech, and Language Processing, 18(6).
    18. EASE Software (2009). EASE 4.3 User’s Guide & Tutorial. Germany: ADA (Acoustic Design Ahnert).
    19. Elmualim, A. A., Zhang, Y., Ma, X., Jian, Y., & Cao, Y. (2006). A new national design code for indoor air environment of sports buildings. Facilities.
    20. Fuchs H.V. & Lamprecht J. (2013). Covered broadband absorbers improving functional acoustics in communication rooms. Applied Acoustic, 74(1), 18-27.
    21. Francesco M., Michele D. & Sabrina D. C. (2011). Laboratory measurement of sound absorption of occupied pews and standing audiences. Applied Acoustic, 72(6), 341-349.
    22. Gil-Lopez, T., Galvez-Huerta, M. A., O’Donohoe, P. G., Castejon-Navas, J., & Dieguez-Elizondo, P. M. (2017). Analysis of the influence of the return position in the vertical temperature gradient in displacement ventilation systems for large halls. Energy and Buildings, 140, 371-379.
    23. Glen M. B. (2008). Handbook of sound engineers. the UK: Transferred to Taylor & Francis.
    24. Goldsworthy, R. L., & Greenberg, J. E. (2004). Analysis of speech-based speech transmission index methods with implications for nonlinear operations. The Journal of the Acoustical Society of America, 116(6), 3679-3689.
    25. Hwang I. H. & Choi W. G. (2016). Improving acoustical characteristics of a Gothic cathedral using simple public address system: A case study of Myeong-dong Cathedral in Seoul, Korea. Frontiers of Architectural Research, 6(1), 17-28.
    26. Hak, C. C. J. M., Wenmaekers, R. H. C. & van Luxemburg, L. C. J. (2012). Measuring Room Impulse Responses: Impact of the Decay Range on Derived Room Acoustic Parameters. Acta Acustica united with Acustica, 98, 907-915.
    27. Hegvold L.W. (1971). The sound absorption of an audience on unupholstered seating. Applied Acoustic, 4(4), 257-278.
    28. ISO 1996-1:2016 Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures. International Organization for Standardization.
    29. IEC 60268-16:2011 Sound system equipment — Part 16: Objective rating of speech intelligibility by speech transmission index. International Electrotechnical Commission.
    30. ISO 3382-1:2009 Acoustics — Measurement of room acoustic parameters — Part 1: Performance spaces. International Organization for Standardization.
    31. International Basketball Federation (2009). Guide to Basketball Facilities. Geneva Switzerland.
    32. Int-Hout, D., & Kloostra, L. (1999). Air distribution for large spaces. ASHRAE journal, 41(4), 57.
    33. Jarosław R., Adam P. & Marcin Z. (2012). Measurements of the Sound Absorption Coefficient of Auditorium Seats for Various Geometries of the Samples. Archives of Acoustics, 37, 483-488.
    34. José A. G., Teófilo Z. & Sara G. (2012). Virtual models for the prediction of acoustic fields of Manuel de Falla Auditorium in Granada, Spain. Applied Acoustic, 73, 921-935.
    35. Jing, Y., & Xiang, N. (2007). A modified diffusion equation for room-acoustic predication. The Journal of the Acoustical Society of America, 121(6), 3284-3287.
    36. Joyce W. B. (1978). Exact effect of surface roughness on the reverberation time of a uniformly absorbing spherical enclosure. The Journal of the Acoustical Society of America, 64, 1429-1436.
    37. Kim, G., Schaefer, L., Lim, T. S., & Kim, J. T. (2013). Thermal comfort prediction of an underfloor air distribution system in a large indoor environment. Energy and Buildings, 64, 323-331.
    38. Kim Y. H., Kim J. H. & Jeon J. Y. (2011). Scale Model Investigations of Diffuser Application Strategies for Acoustical Design of Performance Venues. Acta Acoustia United with Acoustia, 97, 791–799.
    39. Karimipanah, T., & Awbi, H. B. (2002). Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation. Building and Environment, 37(12), 1329-1342.
    40. Kuttruff H. (1979)Room Acoustics, 2d edition, Applied Science Publishers, Barking, England, 1979, pp. 180-192.
    41. Krokstad A., Strom S. & Sørsdal C. (1968). Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration, 8(1), 118-125.
    42. Lestinen, S., Koskela, H., Jokisalo, J., Kilpeläinen, S., & Kosonen, R. (2016). The use of displacement and zoning ventilation in a multipurpose arena. International Journal of Ventilation, 15(2), 151-166.
    43. Lautenbach M., Heringa P. &Vercammen M. (2007). Acoustics for large scale indoor pop events. Proceedings of the 19th satellite symposium of the International Symposium on Room Acoustics. Sevilla, Spain
    44. Maria C. (2018). Architectural customized design for variable acoustics in a Multipurpose Auditorium. Applied Acoustic, 140, 167-177.
    45. Mike B. & Sven K. (2017). A possible acoustic design approach for multi-purpose auditoria suitable for both speech and music. Applied Acoustic, 115, 42-49.
    46. Michael Vorländer (2008). Auralization:fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg.
    47. M. David Egan (2007). Architectural Acoustics. FL, USA: J. Ross Publishing.
    48. Ma, X., Li, X., & Dou, C. (2002). Isothermal airflow in a gymnasium studied by numerical and full-scale experimental methods. Proceedings Indoor Air, 1, 332-337.
    49. Massman, W. J. (1998). A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment, 32(6), 1111-1127.
    50. Nada, S. A., El-Batsh, H. M., Elattar, H. F., & Ali, N. M. (2016). CFD investigation of airflow pattern, temperature distribution and thermal comfort of UFAD system for theater buildings applications. Journal of Building Engineering, 6, 274-300.
    51. O'Donohoe, P. G., Gálvez-Huerta, M. A., Gil-Lopez, T., Dieguez-Elizondo, P. M., & Castejon-Navas, J. (2019). Air diffusion system design in large assembly halls. Case study of the Congress of Deputies parliament building, Madrid, Spain. Building and Environment, 164, 106311.
    52. Odeon Acoustic Software (2018). Odeon Room Acoustics Software User’s Manual Version 15. Kgs. Lyngby, Denmark: Odeon A/S.
    53. Pieren R., Schäffer B., Schoenwald S. & Eggenschwiler K. (2016). Sound absorption of textile curtains - Theoretical models and validations by experiments and simulations. Textile Research Journal, 88(1), 36-48.
    54. Picaut, J., Simon, L., & Polack, J. D. (1997). A mathematical model of diffuse sound field based on a diffusion equation. ACTA Acustica united with Acustica, 83(4), 614-621.
    55. Rindel J. H. (2000). The use of computer modeling in room acoustics. Journal of Vibroengineering, 3(4).
    56. Sarwono J., Prasetiyo I., Natanael H. & Tanjung I. (2016). Study on Acoustic Performance of Football Stadium. Proceedings of the 23rd International Conference on Sound and Vibration. Athens, Greeks.
    57. Stamou, A. I., Katsiris, I., & Schaelin, A. (2008). Evaluation of thermal comfort in Galatsi Arena of the Olympics “Athens 2004” using a CFD model. Applied Thermal Engineering, 28(10), 1206-1215.
    58. Stathopoulou, O. I., & Assimakopoulos, V. D. (2008). Numerical study of the indoor environmental conditions of a large athletic hall using the CFD code PHOENICS. Environmental Modeling & Assessment, 13(3), 449-458.
    59. Snow, W. B. (1931). Audible frequency ranges of music, speech and noise. The Bell System Technical Journal, 10(4), 616-627.
    60. Taebnia, M., Toomla, S., Leppä, L., & Kurnitski, J. (2019). Air distribution and air handling unit configuration effects on energy performance in an air-heated ice rink arena. Energies, 12(4), 693.
    61. The International Table Tennis Federation (2016). Handbook. Lausanne, Switzerland.
    62. Varodompun, J., & Navvab, M. (2007). HVAC ventilation strategies: the contribution for thermal comfort, energy efficiency, and indoor air quality. Journal of Green Building, 2(2), 131-150.
    63. Wang, Y., Wong, K. K., Du, H., Qing, J., & Tu, J. (2014). Design configuration for a higher efficiency air conditioning system in large space building. Energy and Buildings, 72, 167-176.
    64. Wan, M. P., & Chao, C. Y. (2002). Experimental study of thermal comfort in an office environment with an underfloor ventilation system. Indoor and Built Environment, 11(5), 250-265.
    65. Xin, W., Chen, H., Weiwu, C., Xuelei, G., & Wen, L. (2011). Experimental study on indoor thermal stratification in large space by under floor air distribution system (UFAD) in summer. Engineering, 2011.
    66. Xiang D., Wang Z. & Chen J. (1991). Acoustic design of the gymnasium and natatorium of chinese national olympic sports center. Applied Acoustic, 34(4), 267-279.
    67. Yang, B., Melikov, A. K., Kabanshi, A., Zhang, C., Bauman, F. S., Cao, G., & Tham, K. W. (2019). A review of advanced air distribution methods-theory, practice, limitations and solutions. Energy and Buildings, 109359.
    68. Yvonne W., MartinT. & Lau N. (2018). The influence of profiled ceilings on sports hall acoustics: Ground effect predictions and scale model measurements. Applied Acoustic, 130, 156-167.
    69. Yokota T., Sakamoto S. & Tachibana H. (2000). Difference in acoustic effect of sound diffusers due to room shape. Journal of the Acoustical Society of Japan (E), 21, 283-285.
    70. Yuan, X., Chen, Q., & Glicksman, L. R. (1998). A critical review of displacement ventilation. ASHRAE Transactions-American Society of Heating Refrigerating Airconditioning Engin, 104(1), 78-90.
    71. Zeng X. Y., Christensen C. L. & Rindel J. H. (2005). New Methods of Scattering Coefficients Computation for the Prediction of Room Acoustic Parameters. Proceedings of the 6th International Conference on Theoretical and Computational Acoustics. Hangzhou, Zhejiang, China.

    下載圖示
    2021-09-01公開
    QR CODE