簡易檢索 / 詳目顯示

研究生: 游景富
Yu, Ching-Fu
論文名稱: 用於渦輪碼之改進軟式輸出維特比演算法
A Modified Soft Output Viterbi Algorithm for Turbo Codes
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 51
中文關鍵詞: 渦輪碼軟式輸出維特比演算法
外文關鍵詞: SOVA, Turbo codes
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   渦輪碼是用於改進通信可靠度的最強大錯誤控制碼之一。為了去解這樣的碼,維特比演算法藉由導入軟式值去修正以適合去解碼遞歸系統性迴旋碼。這個改進過的維特比演算法稱作軟式輸出維特比演算法(SOVA)。與最大事後機率演算法(MAP)比較,SOVA的優點就是提供了低複雜性的解碼器。然而,SOVA的效能卻不如MAP演算法。

      爲了改善SOVA效能,在這篇論文裡,一個新的權重參數被導入SOVA內。它與在格子區段內發生的最好的路徑的機率有關。藉由模擬,我們將證明這個修正可以改善原先SOVA的效能。

      Turbo codes are among the most powerful error-correcting codes for improving the communication reliability. To decode such codes, the Viterbi algorithm was modified by introducing the soft values to be suitable for decoding recursive systematic convolutional codes. The modified Viterbi algorithm is referred to as the Soft-Output Viterbi algorithm (SOVA). Comparing with the Maximum A-Posteriori Probability algorithm (MAP), the advantage of the SOVA is providing a low complexity decoder. However, the performance of the SOVA is inferior to the MAP algorithm.

      In order to improve the performance of the SOVA, in this thesis, a new weighting parameter is introduced for the SOVA. It is associated with the probability of the best path occurring in the trellis. By the simulation, we will show that this modification can improve the performance of the original SOVA.

    Chinese Abstract I English Abstract II Acknowledgements Ⅲ Contents Ⅳ List of Figures VII List of Tables XI 1. Introduction 1 2. Encoding of Turbo Codes 3 2.1 Introduction……..……………………………………….….3 2.2 Constituent Codes…..………………………………………4 2.3 Interleaver……………..……………………………………5 2.3.1 Random Interleaver…………….…………………….6 2.3.2 Block Interleaver………………..……………………7 2.4 Puncture……………………………………………………8 2.5 Simulation Results…...……………………………………..9 3. Decoding of Turbo Codes 11 3.1 Introduction……………..…………………………...…….11 3.2 The Decoding Algorithm………………………………….12 3.2.1 Maximum A Posteriori Algorithm…….....…..……...13 3.2.1.1 Calculation of the ………….…………….15 3.2.1.2 Calculation of the ………………….………16 3.2.1.3 Calculation of the ....…………………..…17 3.2.2 Log-MAP Algorithm………..……………………….20 3.2.3 Max-Log-MAP Algorithm…………………..………22 3.2.4 Soft-Output Viterbi Algorithm (SOVA)……………24 3.3 Iterative Decoding……………...………………………….27 3.4 Simulation Results………………………………………30 4. System Model 31 4.1 Overview of System Model……….……………………….31 4.2 Channel Model…………………………………………….32 4.2.1 Correlated Rayleigh Fading………………………32 4.2.2 Uncorrelated Rayleigh Fading……………………33 4.3 Channel Interleaver………………………………………33 4.4 Channel Estimation………………………………………34 4.4.1 Linear Interpolation………………………………..34 4.4.2 Least-Squares Fitting………………………………35 5. Modified SOVA 37 5.1 Introduction……………………………...……………….37 5.2 Drawbacks of SOVA…………………………………37 5.3 Modification on SOVA………………………………38 6. Simulation Results 41 6.1 AWGN Channels…………………….…………………42 6.2 Rayleigh Fading Channel…………….………………42 7. Conclusion 46 7.1 Future Works……..….………………………………46

    [1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding : Turbo-codes(1)” in Proc. IEEE Int. Conf. Commun, Geneva, Switzerland, May 1993. pp. 1064-1070
    [2] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding : Turbo codes” IEEE Transactions on Communications, vol. 44, pp. 1261-1271, October 1996.
    [3] Sergio Benedetto and Guido Montorsi, “Design of Parallel Concatenated Convolutional Codes” IEEE Transactions on Communications, vol. 44, No.5, May 1996.
    [4] Jinhong Yuan, Vucetic B., and Wen Feng, “Combined Turbo Codes and interleaver design” Communications, IEEE transactions, Vol.: 47, pp.484-487, April 1999.
    [5] Hokfelt, J., Edfors O., and Maseng T., “A turbo code interleaver design criterion based on the performance of iterative decoding ” IEEE Communications Letters Vol.52, pp.52-54, February 2001.
    [6] L. R Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for Minimising Symbol Error rate” IEEE Communications on Information Theory, vol.20, pp.284-287, March 1974.
    [7] P. Roberston, E. Villebrun, and P. Hoher, “A Comparison of Optimal and Sub-Optimal MAP Decoding Algorithms Operating in the Log-domain” in Proceedings of International Conference on Communications, pp.1009-1013, June1995.
    [8] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol dectectors with parallel structures for ISI channels” IEEE Transactions on Communications, vol. 42, pp.1661-1671, 1994.
    [9] J. Hagenauer and P. Hoher, “A Viterbi algorithm with soft-decision outputs and its applications”, in IEEE Globecom, pp. 1680-1686, 1989.
    [10] Joachim, Hagenauer, “Source-Controlled Channel Decoding”, IEEE Transactions on Communications, vol. 43, No. 9, September 1995.
    [11] Y. Li and X. Huang, “The Simulation of Independent Rayleigh Fades” , IEEE Transactions on Communications, vol. 50, pp. 1503-1513, Sep.2002.
    [12] Lang Lin and Roger S. Cheng, “Improvements In SOVA-Based Decoding For Turbo Codes” Proc. IEEE ICC, Montreal, Canada, pp. 1473-1478, June 1997.
    [13] Marc P. C. Fossorier, Frank Burkert, Shu Lin, and Joachim Hagenauer, “On the Equivalence Between SOVA and Max-Log-Map Decodings” IEEE Communications Letters Vol.2, No.5, May 1998.
    [14] Chuan Xiu Huang and Ali Ghrayeb, “An Improved SOVA Algorithm for Turbo Codes Over AWGN and Fading Channels” Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on
    Volume 2, Vol.2, pp. 1121-1125, September 2004.
    [15] Lutz Papke, Patrick Robertson and Emmanuelle Villebrun, “Improved Decoding with the SOVA in a Parallel Concatenated (Turbo-code) Scheme” Proc. of ICCC, July 1996.
    [16] S. M. Alamouti, “A simple transmit diversity technique for wireless communications”, IEEE Journal Select. Areas Common., vol. 16, no. 8, pp. 1451-1458, Oct 1998.

    下載圖示 校內:2007-07-12公開
    校外:2007-07-12公開
    QR CODE