| 研究生: |
曾聖淳 Tseng, Sheng-Chun |
|---|---|
| 論文名稱: |
燃燒合成法製備氮化鋁-碳化矽固溶體及其應用性質研究 Combustion Synthesis of AlN-SiC Solid Solutions and their Applications |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 燃燒合成法 、氮化鋁-碳化矽固溶體 |
| 外文關鍵詞: | combustion synthesis, AlN-SiC solid solutions |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鋁雖具有許多優越的性質,實際應用卻未如預期快速成長,其中之主要的原因為許多應用上的問題尚未完全解決。這些應用上的問題,其中關鍵的問題就是水解與潮解的問題;因氮化鋁與碳化矽晶格結構、密度及原子尺寸非常相近,兩者在一定條件下可形成完全固溶體,本論文欲利用其固溶方式改善氮化鋁在抵抗水解及溼氣能力。於低氮壓下製備氮化鋁-碳化矽固溶體,鋁矽比決定固溶體之性質,氮氣壓力則無實質影響;片狀鋁粉則因外表物理因素不適合生產固溶體。使用燃燒合成法製備的氮化鋁-碳化矽固溶體,經抗濕、抗水解測試後,發現氮化鋁-碳化矽固溶體擁有較佳的抵抗濕氣及抵抗水解的能力,並明顯降低水解形成氫氧化鋁的速率,其於高溫中(110℃)抵抗水解的能力更勝於以磷酸表面改質之氮化鋁粉體。而氮化鋁-碳化矽固溶體隨著組成接近氮化鋁,其性質也接近氮化鋁,但僅需固溶微量碳化矽(5 mol%)便可大幅減緩水解後生成氫氧化鋁之速率。雖目前以燃燒合成法之氮化鋁-碳化矽固溶體含有未反應物雜質,但其與環氧樹脂製成複合材料熱傳導值仍有使用純氮化鋁複合材料之一半以上。
Aluminum nitride (AlN) has many superior properties, but in practical application has not been growth rapidly as expected, one of the main reasons is the application problems has not resolved. The key point of the application problems is that AlN is easy to react with water for hydrolysis and deliquescence. The lattice structure, density and atomic size of AlN and silicon carbide (SiC) are very similar that they can form solid solutions in under certain conditions. This thesis wants to improve the hydrolyzed resistance and moisture resistance of AlN by solid solutions of AlN-SiC. Combustion synthesis AlN-SiC solid solutions at low nitrogen pressure region: properties decide by the ratio of Al and Si, the nitrogen pressure has poor correlation with properties. The flaky aluminum is unsuitable to synthesis solid solutions Due to the physical factors of shape. The experiment results show that AlN-SiC solid solutions synthesis by combustion synthesis has better hydrolyzed resistance and moisture resistance, reduce the forming rate of aluminium hydroxide (Al(OH)3) obviously. At high temperature (110℃) surrounding, the hydrolyzed resistance of AlN-SiC solid solutions even better than the phosphoric acid (H3PO4) surface treatment of AlN. The composition of AlN increase, the property of AlN-SiC solid solutions trend to AlN, but only solid solution trace amounts of SiC (5 mol%) can extend the time of forming Al(OH)3 obviously. Although combustion synthesis of AlN-SiC solid solutions has unreacted agent, the composites with epoxy has high thermal conductivity above half of AlN’s composites.
[1] P. Bellwood, First Farmers: The Origins of Agricultural Societies. United States: Wiley-Blackwell, 2004.
[2] R. V. Hippel, Dielectric Materials and Applications, 1954.
[3] W. D. J. Callister, Materials Science and Engineering: An Introduction, 2007.
[4] 吳朗, 電子陶瓷-入門. 中華民國: 全欣資訊圖書股份有限公司, 1992.
[5] 劉宇桓 and 劉如熹, "神奇的陶瓷材料," 科學發展, vol. 408, pp. 6-11, 2006.
[6] 林博文, "碳化矽及其他碳化物," in 陶瓷技術手冊(上), 汪建民, Ed., ed 中華民國: 中華民國粉末冶金協會, 1994.
[7] L. M. Sheppard, "Aluminum Nitride - a Versatile but Challenging Material," American Ceramic Society Bulletin, vol. 69, pp. 1801-1812, 1990.
[8] N. Kuramoto, H. Taniguchi, and I. Aso, "Development of Translucent Aluminum Nitride Ceramics," American Ceramic Society Bulletin, vol. 68, pp. 883-887, 1989.
[9] C. L. Czekaj, M. L. J. Hackney, W. J. H. Jr., L. V. Interrante, G. A. Sigel, P. J. Schields, et al., "Preparation of Silicon Carbide/Aluminum Nitride Ceramics Using Organometallic Precursors," American Ceramic Society Bulletin, vol. 73, pp. 352-357, 1990.
[10] A. Zangvil and R. Ruh, "Composition and properties of hot-pressed SiC-AIN solid solutions," American Ceramic Society Bulletin, vol. 65, pp. 260-265, 1982.
[11] W. Rafaniello, K. Cho, and A. V. Virkar, "Fabrication and characterization of SiC-AlN alloys," Journal of Materials Science, vol. 16, pp. 3479-3488, 1981.
[12] A. Zangvil and R. Ruh, "Phase Relationships in the Silicon Carbide-Aluminum Nitride System," American Ceramic Society Bulletin, vol. 71, pp. 884-890, 2005.
[13] 顏豐名, "材料與社會," 工研院工業材料研究所, vol. 73, p. 45, 1993.
[14] 黃肇瑞, "氮化物," in 陶瓷技術手冊(下), 汪建民, Ed., ed 中華民國: 中華民國粉末冶金協會, 1994.
[15] 宋健民, "鑽石底碳化矽:LED 的夢幻基材," 工業材料雜誌, vol. 247, pp. 160-166, 2007.
[16] I. B. Cutler, P. D. Miller, W. Rafaniello, H. K. Park, D. P. Thompson, and K. H. Jack, "New materials in the Si–C–Al–O–N and related systems," Nature, vol. 275, pp. 355-466, 1978.
[17] V. K. Sikka, J. T. Mavity, and K. Anderson, "Processing of nickel aluminides and their industrial applications," Materials Science and Engineering: A, vol. 153, pp. 712-721, 1992.
[18] L. Baixia, L. Yinkui, and L. Yi, "Preparation of aluminium nitride from organometallic/polymeric precursors," Journal of Materials Chemistry vol. 3, pp. 117-127, 1993.
[19] A. G. Merzhanov and I. P. Borovinskaya, "A New Class of Combustion Processes," Combustion Science and Technology, vol. 10, pp. 195-201, 1975.
[20] J. Subrahmanyam and p.-. M. Vijayakumar vol. 27, Dec 1 1992, "Self-Propagating High-Temperature Synthesis," Journal of Materials Science, vol. 27, pp. 6249-6273, 1992.
[21] A. G. Merzhanov and I. P. Borovins pp. 366-&, "Self-Spreading High-Temperature Synthesis of Refractory Inorganic Compounds," Doklady Akademii Nauk Sssr, vol. 204, p. 366, 1972.
[22] L. M. Sheppard, "Powders That "Explode" Into Materials " " Adv. Mater. Process, vol. 2, pp. 25-32, 1986.
[23] Z. A. Munir, "Synthesis of High-Temperature Materials by Self-Propagating Combustion Methods," American Ceramic Society Bulletin, vol. 67, pp. 342-349, 1988.
[24] 崔洪芝, "静态自蔓延高温合成法形成陶瓷涂层的研究," 中国表面工程, vol. 13, pp. 78-81, 2000.
[25] Z. A. Munir and U. Anselmi-Tamburini, "Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion," Materials Science Reports, vol. 3, pp. 277-365, 1989.
[26] 金雲學 and 張二林, "自蔓延合成技術及原位自生複合材料," 哈爾濱工業大學, 2002.
[27] B. I. Kahikin and Merzhano.Ag, "Theory of Thermal Propagation of a Chemical Reaction Front," Combustion Explosion and Shock Waves, vol. 2, pp. 22-&, 1966.
[28] A. G. Strunina, T. M. Martemyanova, V. V. Barzykin, and V. I. Ermakov, "Ignition of Gasless Systems by a Combustion Wave," Combustion Explosion and Shock Waves, vol. 10, pp. 449-455, 1974.
[29] B. V. Novozhilov, "The rate of propagation of the front of an exothermic reaction in a condensed phase," Doklady Physical Chemistry, vol. 141, p. 836, 1961.
[30] E. J. Langham and B. J. Mason, "The Heterogeneous and Homogeneous Nucleation of Supercooled Water," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 247, pp. 493-504, 1958.
[31] P. B. Price, "Nonbasal Glide in Dislocation‐Free Cadmium Crystals. I. The (101¯1) [12¯10] System," Journal of Applied Physics, vol. 32, pp. 1746-1750, 1961.
[32] A. P. Levitt and R. S. Wanger, WhiskerTechnology. New York: Levitt Wiley Interscience, 1970.
[33] W. S. Jung and H. U. Joo, "Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method," Journal of Crystal Growth, vol. 285, pp. 566-571, Dec 15 2005.
[34] H. Wang, D. O. Northwood, J. C. Han, and S. Y. Du, "Combustion synthesis of AIN whiskers," Journal of Materials Science, vol. 41, pp. 1697-1703, Mar 2006.
[35] W. S. Jung and H. U. Joo, "Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method," Journal of Crystal Growth,, vol. 285, pp. 566-571, 2005.
[36] 劉素英, 自蔓延高溫合成(SHS) TiN粉末的研究 vol. 自蔓延高溫合成技術研究進展: 武漢工業大學出版社, 1994.
[37] 張學軍, 鄭永才, and 韓杰才, "氮氣壓力對Si3N4-SiC-TiN陶瓷自蔓延燃燒合成的影響," 複合材料學報 Acta Materiae Compositae Sinica, vol. 23, pp. 123-126, 2006.
[38] 張寶林, 庄漢銳, and 符錫仁, 硅粉在高壓氮氣中字蔓延燃燒合成氮化硅的反應機理 vol. 自蔓延高溫合成技術研究進展: 武漢工業大學出版社, 1994.
[39] C. Kexin, J. Haibo, Z. Heping, and J. M. F. Ferreira, "Combustion synthesis of AlN-SiC solid solution particles," European Ceramic Society, vol. 20, pp. 2601-2606, 2000.
[40] O. Yamada, K. Hirao, and M. Koizumi, "Combustion Synthesis of Silicon Carbide in Nitrogen Atmosphere," Journal of the American Ceramic Society, vol. 72, pp. 1735-1738, 1989.
[41] H. Xue and Z. A. Munir, "Synthesis of AlN-SiC composites and solid solutions by field-activated self-propagating combustion," European Ceramic Society, vol. 17, pp. 1787–1792, 1997.
[42] R. C. Juang, C. C. Chen, J. C. Kuo, T. Y. Huang, and Y. Y. Li, "Combustion synthesis of hexagonal AlN–SiC solid solution under low nitrogen pressure," Alloys and Compounds, vol. 480, pp. 928-933, 2009.
[43] 陳煥煜, "使用不同型態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討," 國立成功大學 化學工程研究所, 2011.
[44] 謝承佑, "氮化鋁粉體水解性質探討與抗濕技術開發," 國立成功大學化學工程研究所, 2002.
[45] P. Bowen, J. G. Highfield, A. Mocellin, and T. A. Ring, "Degradation of Aluminum Nitride Powder in an Aqueous Environmet," Journal of the American Ceramic Society, vol. 73, pp. 724-728, 1990.
[46] 陳惠軍, "氮化鋁粉體表面披覆無機物之抗濕處理研究," 國立成功大學化學工程研究所, 2002.
校內:2018-07-16公開