| 研究生: |
葉孟恆 Yeh, Meng-heng |
|---|---|
| 論文名稱: |
添加劑對蒙脫土改質之影響 Effects of surfactant on the modification of montmorillonite |
| 指導教授: |
黃文星
Hwang, Weng-sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 蒙脫土 、奈米 、聚氯丁二烯 |
| 外文關鍵詞: | montmorillonite, nano, polychloroprene |
| 相關次數: | 點閱:77 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的為奈米黏土-蒙脫土(montmorillonite)之改質研究。於本論文中將先研究結合環氧乙烯(polyoxyethylene, POE)界面活性劑所製造之兩親性蒙脫土,並探討不同的界面活性(surfactant)改質劑對蒙脫土的影響,再研究蒙脫土於不同溶液中之分散性及其機制,接著,將針對聚氯丁二烯橡膠(polychloroprene)之發泡特性、機械性質與複合機構作一系列之探討。
蒙脫土經離子交換改質後,利用廣角X光繞射儀(wide angle X-ray diffraction, WAXRD)量測不同改質蒙脫土之層狀矽酸鹽層之平均層間間距,以場發射掃描式電子顯微鏡(field emission scanning electron microscopy, FESEM)觀察改質後之表面型態,再以傅立葉紅外線光譜儀(fourier transform infared spectrometer, FTIR)研究其鍵結。
在分散性的研究中,利用雷射粒徑分佈儀(laser particle size distribution analyzer)及X-ray光源粒徑量測分析儀(X-ray particle size analyzer)測量在不同HLB值(hydrophic lipophilic balance value)溶液中之粒徑分佈,並以Stoke’s定律評估其沉積速度,以Dobrat’s方法量測分散率。由實驗結果顯示,經由改質後的兩親性蒙脫土不但平均層間距離加大,且可均勻分散於不同HLB值之溶液中,另外,由實驗結果也指出兩親性蒙脫土有較大的平均層間間距及較好分散性,尤其在含水之極性溶液中,環氧乙烯的氧與溶液會產生氫鍵鍵結,幫助分散。
在聚氯丁二烯/蒙脫土奈米複合材的研究中,分別利用WAXRD、SEM及穿透式電子顯微鏡(transmission electron microscopy, TEM)觀察改質複合材中蒙脫土之矽酸鹽層平均層間間距、表面形態及複合機制,在聚氯丁二烯/蒙脫土之混鍊製程中,利用不同之聚合速度、不同之添加物投料順序研究複合材之機械特性,由研究結果顯示,當氯丁二烯之交鏈反應未加催化劑環亞乙烯硫(ethylene thiourea, ETU)時,可成功混鍊出聚氯丁二烯/蒙脫土奈米複合材,蒙脫土具有脫層(exfoliated)結構。在改質製程二的MMT-N1於機械性質方面,成功將表面及中心拉伸強度(tensile strength)分別從100%提高到136%及166%,而於60%伸長量之表面及中心的拉伸模數(tensile modulus)更大幅從100%增加到234%及286%,而對於120%伸長量之表面及中心的拉伸模數亦大幅由100%增加到202%及282%,成功的增加聚氯丁二烯交鏈。另外,由於撕裂強度(tear strength)為三維空間之交鏈強度,一般補強材很難有效提昇其強度,經本研究之改質製程後,表面及中心之撕裂強度亦從100%提高至148%及158%。對於橡膠而言,伸長率及交鏈程度通常呈現相反的驅勢,當拉伸強度隨交鏈程度增加而增強時,伸長率卻開始下降,因而造成改質的一大困難,經由本研究之改質製程,成功地將破斷伸長率(elongation-at-break)之表面及中心點分別由100%增至105%及111%。
The main objective of this thesis is to study the modification of nanoclay-montmorillonite (MMT). The study firstly aims to study amphibious montmorillonite, which is produced by replacing the sodium ions normally found in clay with polyoxyethylene (POE)-amine cations. The modifications of various surfactants on montmorillonite are also studied. Secondly, the dispersibility and mechemnism of various modified montmorillonite in various solutions are studied. Thirdly, the bubble forming characteristics, mechanical properties and the composite mechanism of polychloroprene/MMT nanocomposites are examined.
Five different modifying cations where tested and an wide angle X-ray diffractmeter (WAXRD) was used to measure the change in d-spacing of MMT. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology of the modified clays. The bonding of the modified and unmodified MMT was examined with a Fourier Transform Infrared spectrometer (FTIR).
In studying the dispersibility, a laser particle size distribution analyzer and an X-ray particle size analyzer were used to measure the particle size of the clays in various hydrophilic lipophilic balance (HLB) value solutions. Dobrat’s method is applied to calculate the dispersibility of each clay and Stoke’s law is used to evaluate the settling rate. The results reveal that amphibious montmorillonite has a high d-spacing and good dispersion characteristics in many different types of solutions. When amphibious montmorillonite disperse in polar solutions, the oxygen atoms in POE attract the polar molecules of the solution and creat H-bonding force. This H-bonding force helps modified montmorillonite to disperse well in these solutions.
In investigating the mechanical properties of nanocomposites, the principal objective is to improve the mechanical properties of polychloroprene through the addition of montmorillonite. The polychloroprene/MMT composite was characterized by WAXRD, SEM and transmission electron microscopy (TEM). Three different processes were employed to study the polychloroprene/MMT nanocomposite. The results show that the polychloroprene/MMT nanocomposite was successfully produced when the polymerization process did not include ethylene thiourea (ETU). The MMT was exfoliated in the polychloroprene matrix. The tensile strength of polychloroprene was increased from 100 % to 136 % and 166 % on the surface and center, separately. The 60 % tensile modulus of polychloroprene was significantly improved from 100 % to 234 % and 286 % on the surface and center, separately. The 120 % thesile modulus of polychloroprene was increased from 100 % to 202 % and 282 % on the surface and center, separately. These results reaveal that the crosslinking of polychloroprene was increased by the addition of MMT. Espectially, the tear strength represents the 3-D crosslinking strength. The filler such as carbon black and fiber cannot improve the tear strength largely. However, after the modification of montmorillonite, the tear strength of polychloroprene was increased from 100 % to 148 % and 158 % on the surface and center, separately. Furthermore, the percentage of elongation usually has opposite trend to the degree of crosslinking. Threrefore, the decrease of elongation cause is a big issue when filler was added into polymer. In this study, the elongation-at-break was successfully improved from 100 % to 105 % and 111 % on the surface and center, separately.
1.J. L. Zhao, T. Fu, Y. Han and K. Xu, “Reinforcing hydroxyapatite/ thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing”, Materials Letters, Vol. 58, 2004, pp. 163-168.
2.K. K. Narva, L. V. Lassila and P. K. Vallittu, “The static strength and modulus of fiber reinforced denture base polymer”, Dental Materials, Vol. 21, 2005, pp. 421-428.
3.F. M. Zhao and N. Takeda, “Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results”, Composites A, Vol. 31, 2000, pp. 1203-1214.
4.V. Ramanan, “Mechanical properties of alumina fiber/glass matrix composites with and without a tin dioxide interface”, Materials Science and Engineering A, Vol. 268, 1999, pp. 47-54.
5.J. H. Chang, S. J. Kim and S. Im, “Poly(trimethylene terephthalate) nanocomposite fibers by in intu intercalation polymerization: Thermo-mechanical properties and morphology”, Polymer, Vol. 45, 2004, pp. 5171-5181.
6.T. D. Fornes and D. R. Paul, “Modeling properties of nylon 6/clay nanocomposites using composite theories”, Polymer, Vol. 44, 2003, pp. 4993-5013.
7.M. Wang, A. J. Hsieh and G. C. Rutledge, “Electrospinning of poly(MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties”, Polymer, Vol. 46, 2005, pp. 3407-3418.
8.Kurauchi, Toshio and Takahashi etc., “Method for producing reinforced thermoplastic resin composition”, United States Patent, No. 4,486,373, December 4, 1984.
9.Okada, Akane and Fukushima etc., “Composite material and process for manufacturing same”, United States Patent, No. 4,739,007, April 19, 1988.
10.F. Chavarria and D. R. Paul, “Comparison of nanocomposites based on nylon 6 and nylon 66”, Polymer, Vol. 45, 2004, pp. 8501-8515.
11.D. Wang and C. A. Wilkie, “In-situ reactive blending to prepare polystyrene–clay and polypropylene–clay nanocomposites”, Polymer Degradation and Stability, Vol. 80, 2003, pp. 171-182.
12.H. S. Nalwa, “Handbook of surfaces and interfaces of materials- nanostructured materials, micelles and colloids”, Stanford Scientific Corporation Los Angeles, California, 2001.
13.K. M. Lee and C. D. Han, “Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites”, Polymer, Vol. 44, 2003, pp. 4573-4588.
14.G. D. Barber, B. H. Calhoun and R. B. Moore, “Poly(ethylene terephthalate) ionomer based clay nanocomposites produced via melt extrusion”, Polymer, Vol. 46, 2005, pp. 6706-6714.
15.Y. Xu, W. J. Brittain, C. Xue and R. K. Eby, “Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method”, Polymer, Vol. 45, 2004, pp. 3735-3746.
16.C. Zhao, H. Qin, F. Gong, M. Feng, S. Zhang and M. Yang “Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites”, Polymer Degradation and Stability, Vol. 87, 2005, pp. 183-189.
17.胡瑞林,“黏性土微結構定量模型及其工程地質特微研究”,地質出版社,北京,1990.
18.David R. Lide, “CRC handbook of chemistry and physics: Polymer properties”, National Institute Standards and Technology, Stanford, 2004.
19.C. Breen and R. Waston, “Polycation-exchanged clays as sorbents for organic pollutants: Influence of layer charge on pollutant sorption capacity” Journal of Colloid and Interface Science, Vol. 208, 1998, pp. 422-429.
20.M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka and H. Tateyama, “Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization”, Polymer, Vol. 41, 2000, pp. 3887-3890.
21.D. M. Delozier, R. A. Orwoll, J. F. Cahoon, J. S. Ladislaw, J. G. Smith and J. W. Connell, “Polyimide nanocomposites prepared from high-temperature reduced charge organoclays”, Polymer, Vol. 44, 2003, pp. 2231-2241.
22.T. M .Wu and J. Y. Wu, “Structural analysis of polyamide/clay nanocomposites”, Journal of Macromolecular Science-Physics, Vol. 41, 2002, pp. 17-31.
23.C. R. Tseng, J. Y. Wu, H. Y. Lee and F. C. Chang, “Preparation and crystallization behavior of syndiotactic polystyrene/clay nanocomposites”, Polymer, Vol. 42, 2001, pp. 10063-10070.
24.J. H. Kim, C. M. Koo, Y. S. Choi, K. H. Wang and I. J. Chung, “Preparation and characterization of polypropylene/layered silicate nanocomposites using an antioxidant”, Polymer, Vol. 45, 2004, pp. 7719-7727.
25.C. R. Tseng, J .Y. Wu, H. Y. Lee and F. C. Chang, “Preparation and characterization of polystyrene/clay nanocomposites by free radical polymerization”, Journal of Applied Polymer Science, Vol. 85, 2002, pp. 1370-1377.
26.T. M. Wu, S. F. Hsu and J. Y. Wu, “Nonisothermal crystallization behavior of syndiotactic polystyrene/montmorillonite nanocomposites”, Journal of Polymer Science A, Vol. 41, 2003, pp. 560-570.
27.L. Biasci, M. Aglietto, G. Ruggeri and F. Ciardelli, “Functionalization of montmorillonite by methyl mehyacrylate polymers containing side-chain ammonium cations”, Polymer, Vol. 35, 1994, pp. 3296-3304.
28.A. Tabtiang, S. Lumlong and R. A. Venables, “The influence of preparation method upon the structure and relaxation characteristics of poly(methyl methacrylate)/clay composites”, European Polymer Journal, Vol. 36, 2000, pp. 2559-2568.
29.J. Ma, S. Zhang and Z. Qi, “Synthesis and characterization of elastomeric polyurethane/clay nanocomposites”, Journal of Polymer Science A, Vol. 82, 2001, pp.1444-1448.
30.Y. I. Tien and K. H. Wei, “High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders”, Macromolecules, Vol. 34, 2001, pp. 9045-9052.
31.F. A. Bottino, E. Fabbri, I. L. Fragalà, G. Malandrino, A. Orestano, F. Pilati and A. Pollicino, “Polystyrene-Clay nanocomposites prepared with polymerizable imidazolium surfactants”, Macromolecular Rapid Communications, Vol. 24, 2003, pp. 1079-1084.
32.D. C. Lee and L. W. Jang, “Preparation and characterization of PMMA-Clay hybrid composite by emulsion polymerization”, Journal of Applied Polymer Science, Vol. 61, 1996, pp. 1117-1122.
33.A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi and O. Kamigaito, “Synthesis and properties of nylon 6/clay hybrids”, Materials Research Society, Vol. 171, 1990, pp. 45-50.
34.T. K. Chen, Y. I. Tien and K. H. Wei, “Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly( -caprolactone)/clay”, Journal of Polymer Science, Vol. 37, 1999, pp. 2225-2233.
35.T. Agag, T. Koga and T. Takeichi, “Studies on thermal and mechanical properties of polyimide–clay nanocomposites”, Polymer, Vol. 42, 2000, pp. 3399-3408.
36.H. L. Tyan, Y. C. Liu and K. H. Wei, “Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay”, Chemistry of Materials, Vol. 11, 1999, pp. 1942-1947.
37.J. W. Gilman, T. Kashiwagi and J. D. Lichtenhan, “Nanocomposites: A revolutionary new flame retardant approach”, The Society for the Advancement of Material and Process Engineering Journal, Vol. 33, 1997, pp. 40-46.
38.K. Yano, A. Usuki and A. Okada, “Synthesis and properties of polyimide-clay hybrid films”, Journal of Polymer Science A, Vol. 35, 1997, pp. 2289 -2294.
39.A. Gu, S. W. Kuo and F. C. Chang, “Syntheses and properties of PI/clay hybrids”, Journal of Applied Polymer Science, Vol. 79, 2000, pp. 1902-1910.
40.J. H. Chang and U. K. Yeong, “Synthesis of poly(buty1ene terephthalate) nanocomposite by insitu interlayer polymerization and characterization of its fiber”, Journal Polymer Bulletin, Vol. 51, 2003, pp. 69-75.
41.V. Nigam, D. K. Setua, G. N. Mathur and K. K. Kar, “Epoxy-montmorillonite clay nanocomposites: Synthesis and characterization”, Journal of Applied Polymer Science, Vol. 93, 2004, pp. 2201-2210.
42.J. M. Yeh, S. J. Liou and M. C. Lai, “Comparative studies of the properties of poly(methyl methacrylate)–clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion”, Journal of Applied Polymer Science, Vol. 94, 2004, pp. 1936-1946.
43.W. Dobrat and A. Martijn, “CIPAC handbook physio-chemical methods for technical and formulated pesticides”, Collaborative International Pesticides Council Ltd., Oxfordshire, England, 1995.
44.J. M. Zeigler, “ Tables and graphs for the settling velocity of quartz in water, above the range of Stoke’s law”, Woods Hole Oceanographic Institution, Mississippi, 1959.
45.D. D. Jiang, G. F. Levchik, S. V. Levchik, C. Dick, J. J. Liggat and C. E. Snape, “Thermal degradation of cross-linked polyisoprene and polychloroprene”, Polymer Degradation and Stability, Vol. 68, 2000, pp. 75-82.
46.K. N. Pandey, D. K. Setua and G. N. Mathur, “Material behaviour: Fracture topography of rubber surfaces”, Polymer Testing, Vol. 22, 2003, pp. 353-359.
47.J. Hao, C. A. Wilkie and J. Wang, “An XPS investigation of thermal degradation and charring of cross-linked polyisoprene and polychloroprene”, Polymer Degradation and Stability, Vol. 71, 2001, pp. 305-315.
48.M .S. Pinho, M. Gregori,C. R. Nunes and B. G. Soares, “Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powde”, Polymer Degradation and Stability, Vol. 73, 2001, pp. 1-5.
49.H. Ismail, Z. Ahmad and I. Z. Mohd, “Effects of cetyltrimethylammonium maleate on curing characteristics and mechanical properties of polychloroprene rubber”, Polymer Testing, Vol. 22, 2003, pp. 179-183.
50.F. Delor, J. Lacoste, J. Lemaire, N. Barrois-Oudin and C. Cardinet, “Photo- and thermal ageing of polychloroprene: Effect of carbon black and crosslinking”, Polymer Degradation and Stability, Vol. 53, 1996, pp. 361-369.
51.鞠建英,“膨潤土在工程中的開發與應用”,中國建材工業出版社,北京,2003.
52.W. E. Worall, “ Clays: their nature, origin and general properties”, Maclaren and sons, London, 1968, pp. 195-225.
53.Olphen V. H., “ An introduction to clay colloid chemistry, 2nd ed.”, Wiley, New York, 1977, pp. 123-133.
54.漆宗能和尚文宇,“高分子/蒙脫土奈米複合材料”,五南圖書出版公司,台北,2004,pp. 15-22.
55.G. Lagaly, “Interaction of alkylamines with different types of layered compounds”, Solid State Ionics, Vol. 22, 1986, pp. 43-51.
56.G. Lagaly, “Layer Charge Heterogeneity in Vermiculites”, Clays and Clay Minerals, Vol. 30, 1982, pp. 215-222.
57.H. P. Klug and L. E. Alexander, “ X-ray diffraction procedures for polycrystalline and amorphous materials”, Wiley and Sons, 1974.
58.T. J,Pinnavaia and G. W Beall, “Polymer-clay nanocomposites”, John Wiley and Sons, 2000.
59.B. Rand, E. Pekenc, J. W. Goodwin and R. W. Smith, “Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions”, Journal of the Chemical Society, Vol. 76, 1980, pp. 225-235.
60.M. Morvan, D. Espinat, J. Lambard and T. Zemb, “Ultrasmall- and small-angle X-ray scattering of smectite clay suspensions”, Colloids and Surface, Vol. 82, 1994, pp. 193-203.
61.柯揚船和皮特斯壯,“聚合物-無機奈米複合材料”,五南圖書出版公司,台北,2004.
62.歐靜枝,“乳化溶化技術實務”,復漢出版社,台南,2001.
63.R. A. Vaia, K. D. Jandt, E. J. Kramer and E. P. Giannelis, “Kinetics of polymer melt intercalation”, Macromolecules, Vol. 28, 1995, pp. 8080-8085.
64.R. A. Vaia, K. D. Jandt, E. J. Kramer and E. P. Giannelis, “Microstructural evolution of melt intercalated polymer- organically modified layered silicates nanocomposites”, Chemistry of Materials, Vol. 8, 1996, pp. 2628-2635.
65.G. Jimenez, N. Ogata, H. Kawai and T. Ogihara, “Structure and thermal/mechanical properties of poly ( -caprolactone)-clay blend”, Journal of Applied Polymer Science, Vol. 64, 1997, pp.2211-2220.
66.E. Guth, “Theory of filler reinforcement”, Journal of Applied Physics, Vol. 16, 1945, pp. 20-25.
67.O. Ishai and L. J. Cohen, “Elastic properties of filled and porous epoxy composites”, International Journal of Mechanical Sciences, Vol. 9, 1967, pp. 539-539.
68.M. Takayanagi, H. Harima and Y. Iwata, “Viscoelastic behavior of polymer bleds and its comparison with model experiments”, Reports on Progress in Polymer Physics (Japanese), Vol. 6, 1963, pp. 121-125.
69.J. E. Ashton and J. C. Halpin, “Primer on composite materials: Analysis”, Technomic Ltd., Stanford, 1969.
70.L. J. Broutman and R. H. Krock, “Modern Composite Materials”, Addison-Wesley, London, 1967.
71.J. C. Halpin and S. W. Tsai, “Effects of environmental factors on composite materials”, Air force technical report AFML-TR June, 1969, pp. 67–423.
72.L. E. Nielse, “Simple theory of stress-strain properties of filled polymers”, Journal of Applied Polymer Science, Vol. 10, 1966, pp. 97-103.
73.L. Nicolais and M. Narkis, “Stress–strain behaviour of SAN/glass bead composites in the glassy region”, Polymer Engineering and Science, Vol. 11, 1971, pp. 194-194.
74.S. Ahmed and F. R. Jones, “A review of particulate reinforcement theories for polymer composites”, Journal of Materials Science, Vol. 25, 1990, pp. 4933-4942.
75.B. Pukánszky, “Influence of interface interaction on the ultimate tensile properties of polymer composites”, Composites, Vol. 21, 1990, pp. 255-262.
76.B. Pukanszky and F. H. J. Maurer, “Composition dependence of the fracture toughness of heterogeneous polymer systems”, Polymer, Vol. 36, 1995, pp. 1617-1625.
77.American Society for Testing of Materials, “Standard test for vulcanized rubber and thermoplastic elastomers: Tension”, D412, 1998.
78.American Society for Testing of Materials, “Standard test for tear strength of conventional vulcanized rubber and thermoplastic elastomer”, D624, 1998.
79.American Society for Testing of Materials, “Standard test method for rubber property-durometer hardness”, D2240, 2002.
80.陳光明, “聚乙烯/蒙脫土奈米複合材料”, 中國科學院化學研究所博士學位論文, 2000.
81.A. Tabtiang, S. Lumlong and R. A. Venables, “The influence of preparation method upon the structure and relaxation characteristics of poly(methyl methacrylate)/clay composites”, European Polymer Journal, Vol. 36, 2000, pp. 2559-2568.
82.李強,“聚合物-層狀矽酸鹽奈米複合材料”,中國科學院化學研究所博士後出站報告, 1996.
83.T. Lan, P. D. Kaviratna and T. J. Pinnavaia, ” Epoxy self-polymerization in smectite clays”, Journal of Physics and Chemistry of Solids, Vol. 57, 1996, pp. 1005-1010.
84.R. A. Vaia, R. K. Teukolsky and E. P. Giannelis, “Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates”, Chemistry of Materials, Vol. 6, 1994, pp. 1017 - 1022
85.R. A. Vaia, B. B. Sauer, O. K. Tse and E. P. Giannelis, “Relaxations of confined chains in polymer nanocomposites: Glass transition properties of poly(ethylene oxide) intercalated in montmorillonite”, Journal of Polymer Science B, Vol. 35, 1997, pp. 59-67.
86.E. P. Giannelis, R. Krishnamoorti and E. Manias, “Polymer-silicate nanocomposites: Model systems for confined Polymers and Polymer Brushes”, Advances in Polymer Science, Vol. 138, 1999, pp. 107-147.
87.M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, “Preparation and mechanical properties of polypropylene-clay hybrids”, Macromolecules, Vol. 30, 1997, pp. 6333-6338.
88.E. P. Giannelis, “Polymer layered silicate nanocomposites”, Advanced Materials, Vol. 8, 1996, pp. 29-35.
89.Y. H. Yu, J. M. Yeh, S. J. Liou and Y. P. Chang, “Organo-soluble polyimide (TBAPP–OPDA)/clay nanocomposite materials with advanced anticorrosive properties prepared from solution dispersion technique”, Acta Materialia, Vol. 52, 2004, pp. 475-486.
90.R. A. Vaia, A. H. Ishii and E. P. Giannelis, “Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates”, Chemistry of Materials, Vol. 5, 1993, pp. 1694-1696.
91.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito and K. Kaji, “Fine structure of nylon-6-clay hybrid”, Journal of Polymer Science B, Vol. 32, 1994, pp. 625-630.
92.K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigier and J. Varlet, “Clay-reinforced polyamide: Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae”, Journal of Polymer Science B, Vol. 39, 2001, pp.1360-1370.
93.A. Usuki, “Report of Toyota research center 30", No. 4, 1995, pp.54-56.
94.C. Breen and S. Lynch, “Reexamination of the kinetics of the thermal desorption of dimethylsulfoxide and n-methyl formamide from a greensplatt kaolin”, Clays and Clay Minerals, Vol. 36, 1988, pp.19-24.