簡易檢索 / 詳目顯示

研究生: 蔡英傑
Tsai, Ying-Chieh
論文名稱: 應用穩定同位素18O濃度於地下水水力傳導係數反推之研究
Applying stable isotope 18O to the groundwater inverse hydraulic conductivity
指導教授: 徐國錦
Hsu, Kuo-Chin
汪中和
Wang, Chung-Ho
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 81
中文關鍵詞: 水力傳導係數質點追蹤法穩定同位素
外文關鍵詞: hydraulic conductivity, particle tracking method, stable isotope
相關次數: 點閱:150下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地下水參數反推為場址鑑定的一重要方法,但由於資料的缺乏,其可能建構出多種可能之現地狀況,如何降低參數反推之不確定,為地下水研究之重要課題。由於地下水中穩定同位素具有質量守恆的地球化學特性,可用以瞭解地下水流動及補注來源。若配合質點追蹤法將穩定同位素的質點置入流場中,可以追蹤流體質點移動之路徑。本研究使用穩定同位素18O為示蹤材料,配合量測水位資料進行水力傳導係數反推,結果發現使用穩定同位素18O濃度資料可有效降低數值模式之不確定性,將穩定同位素資料應用於ASR試驗資料,獲得Ksand = 0.02772 m/min.、Kgravel = 0.04835 m/min.,其較僅使用水井力學所得之0.038 m/min.,可得更豐富之水文地質資訊,顯示穩定同位素18O濃度資料有助於地下水與污染傳輸數值模式之驗證。

    The groundwater inverse technique is an important method of site characterization. Because of data deficiency, however, many possible scenarios can be deduced from the same data set. Thus the reduction of parameter’s uncertainty from inverse technique becomes a challenge in groundwater research. Because of the property of mass conservation, stable isotopes are ideal tracers to understand the groundwater movement and to estimate the groundwater recharge. In addition, particle tracking method can be applied to stable isotopes to pursue the flow path. In this study, we use data of groundwater levels and stable oxygen isotope to inverse hydraulic conductivity. The result shows that using stable oxygen isotope and groundwater level in the same time, the uncertainty of numerical models can be effectively reduced. We applied the proposed method to an ASR site in the Pingtung plain. The hydraulic conductivity of sand and gravel were obtained as 0.02772(m/min.) and 0.04835(m/min.), respectively. The stable oxygen isotope is shown to be a useful tool in groundwater inverse problems.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 前人研究 2 1.3 研究方法與流程 5 第二章 相關理論 8 2.1 同位素概述 8 2.2 氫氧穩定同位素 9 2.3 氫氧穩定同位素地下水追蹤原理 12 2.4 地下水模擬MODFLOW 15 2.5 水流之質點追蹤法 24    2.5.1 原理 24    2.5.2 MODPATH之數值方法 26 2.6 模式參數反推原理 31 第三章 應用18O資料於水文地質參數之推求 33 3.1 同位素與水位資料於水文地質參數推求之不同涵義 33 3.2 同位素應用概念之介紹 33 3.3 使用水位資料進行模式校正 38 3.4 利用穩定同位素資料進行模式校正 40 3.5 使用水位與同位素雙重資料進行模式校正 43 3.6 利用倒傳遞類神經網路之參數反推 49 第四章 應用18O資料於現地 56 4.1 場址介紹 56 4.2 使用試驗之資料介紹 59 4.3 數值模式之建構 63 4.4 參數反推結果 67 4.5 模式驗證 70 第五章 結論與建議 73 5.1 結論 73 5.2 建議 74 參考文獻 75 自述 81 表目錄 表2-1 常用之地下水模擬軟體一覽表 17 表2-2 最佳化求解方式比較 32 表3-1 假設模式所使用參數設定 35 表3-2 模擬水位變化情形 39 表3-3 模擬值-真值變化情形 39 表3-4 上方補注比率變化情形 41 表3-5 上方補注比率誤差變化情形 42 表3-6 標準化之水位值 44 表3-7 標準化之上方補注比率 44 表3-8 標準化之水位誤差量 45 表3-9 標準化之上方補注比率誤差量 45 表3-10 權重之調整 46 表3-11 10組訓練範例之標準化誤差平方和 52 表3-12 訓練網路學習之隱藏層數目 52 表3-13 訓練網路學習之隱藏層單元數目 52 表3-14 訓練網路學習之學習週期 53 表3-15 訓練10組資料之網路進行參數推求 54 表3-16 16組訓練範例之標準化誤差平方和 55 表3-17 訓練16組資料之網路進行參數推求 55 表4-1 ASR井抽水補注試驗工作概況及時程 60 表4-2 ASR井抽水補注試驗資料分析 61 表4-3 ASR場穩定氫氧同位素資料 62 表4-4 模式之高程設定 64 表4-5 水力傳導係數調整變化 64 表4-6 模式所使用參數設定 64 表4-7 變水頭邊界之變化 65 表4-8 時間長度與水力傳導係數10組訓練範例 68 表4-9 觀測同位素濃度比率在0.25, 0.5, 0.75, 1之到達時間 69 表4-10 類神經網路參數推求情形 69 圖目錄 圖1-1 本研究架構與流程圖 7 圖2-1 原子的結構 8 圖2-2 大氣水循環過程中,氧同位素分化情形 10 圖2-3 網格化含水層示意圖 16 圖2-4 水流於兩網格元素間的關係示意圖 19 圖2-5 三維空間中各網格元素間的相對位置示意圖 20 圖2-6 反向差分求解法之示意圖 23 圖2-7 Alberta西南方Ross Greek流域之穩態地下水流剖面模型 25 圖2-8 三維假想網格圖 27 圖2-9 流出質點之二維示意圖 30 圖3-1 模式建構示意圖 34 圖3-2 剖面分層示意圖 35 圖3-3 數值模擬之水位等值圖 36 圖3-4 數值模擬之流線圖 36 圖3-5 井篩處獲得之流線圖 36 圖3-6 假設案例概略示意圖 37 圖3-7 流場模擬已知條件示意圖 38 圖3-8 水位誤差變化曲面 40 圖3-9 質點追蹤已知條件示意圖 41 圖3-10 上方補注比率誤差變化曲面 42 圖3-11 水位誤差曲面與補注比率誤差曲面之疊合 43 圖3-12 Wh=0.1;WΔ=0.9 47 圖3-13 Wh=0.9;WΔ=0.1 47 圖3-14 Wh=0.3;WΔ=0.7 48 圖3-15 Wh=0.7;WΔ=0.3 48 圖3-16 Wh=0.5;WΔ=0.5 49 圖3-17 雙彎曲函數 50 圖3-18 倒傳遞網路示意圖 51 圖4-1 屏東平原沖積扇分佈圖 57 圖4-2 ASR場平面配置圖 58 圖4-3 ASR場地層剖面圖 59 圖4-4 ASR場穩定氧同位素與地下水位變化 63 圖4-5 ASR場模式剖面示意圖 66 圖4-6 ASR場模式建構平面示意圖 66 圖4-7 同位素濃度比率變化圖 67 圖4-8 觀測MW-2同位素與補注時間之迴歸分析 69 圖4-9 模擬到達時間與線性迴歸之擬合情況 70 圖4-10 第9次現地觀測MW-2同位素與補注時間之迴歸分析 71 圖4-11 驗證之模擬到達時間與線性迴歸擬合情況 72

    Anderson, M. P. and W. W. Woessner, 1992, Applied groundwater modeling: simulation of flow and advective transport, Academic Press, Inc., California.

    Chapra, S. C. and R. Canale, 2002, Numerical methods for engineers with software and programming applications, 4e, McGraw-Hill Companies, Inc.

    Craig, 1961, Isotopic varuations in meteoric water, Science, 133, p. 1702-1703.

    Dansgaard, W., 1964, Stable isotopes in precipitation, Tellus, 16, p. 436-468.

    Darling, W. G. and H. Armannsson, 1989, Stable isotopic aspects of fluid flow in the Krafla, Namafjall and Theistareykir geothermal systems of northeast Iceland. In K. Gronvold(Guest-Editor), Water-Rock Interaction. Chem. Geol., 76, p. 197-213.

    Duplessy, J. C., C. Lalou, and A. C. Vinot, 1970. Differential isotopic fractionation in benthic foraminifera and paleotemperatures re-assessed. Science, 168:250-251.

    Gat, J. R. and R. Gonfiantini, 1981, Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, IAEA, Vienna, Tech. Rep. Ser., No. 210.

    Gat, J. R., 1980, The isotopes of hydrogen and oxygen in precipitation. In: p. Fritz and J. Ch. Fontes (eds.), Handbook of Environmental Isotope Geochemistry, p. 21-47.

    Hantush, M. S., and C. E. Jacob, 1955, Nonsteady radial flow in an infinite leaky aquifer, Trans. Am. Geophys. Union, v. 36, p. 95-100.

    Hoefs, J., 1987, Stable Isotope Geochemistry. 4th Ed., Spriger- Verlag, New York.

    I.A.E.A., Guidebook on nuclear techniques in hydrology, 1983, Vienna, Tech. Rep. Ser., No. 91.

    McWhorter, David B. and Sunada, Daniel K., 1977, Ground-water hydrology and hydraulics, Water Resources Publications.

    Moench, A. F., 1993, Computation of type curves for flow to partially penetrating wells in water-table aquifers, Ground Water, v. 31, p. 966-971.

    Payne, B. R. and Y. Yurtsever, 1974, Environmental isotopes as a hydrogeological tool in Nicaragua, Isotope techniques in groundwater hydrology 1974, IAEA, Vienna, p. 193-201.

    Perry, E. C., T. Grundl, and R. H. Gilkeson, 1980, H, O, S isotopic study of the groundwater in the Cambrian- Ordovician aquifer system of northern Illinois. In: E. C. Perry and C. W. Montgomery(eds.), Isotope Studies of Hydrologic Processes, Northern Illinois University, Illinois, p. 35-43.

    Pollock, D. W., 1994, Use’s guide for MODPATH/MODPATH-PLOT, Version 3: a particle tracking post-processing package for MODFLOW, the U. S. Geological Survey finite-difference ground-water flow model, U. S. Geological Survey.

    Sakai, H. and O. Matsubaya, 1977, Stable isotopic studies of Japanese geothermal system. Geothermics, 5, p. 97-124.

    Schwartz, F. W. and H. Zhang, 2003, Fundamentals of Ground Water, John Wiley & Sons, Inc., New York.

    Senturk, F., S. Bursali, Y. Omay, I. Ertan, S. Guler, H. Yalcin, and E. Onhan, 1970, Isotope techniques applied to groundwater movement in the Konia plain. In: Isotope Hydrology 1970, IAEA, Vienna, p. 153-161.

    Stohr, M. and K. Roth, 2005, Gradient-based estimation of local parameters for flow and transport in heterogeneous porous media, Water Resources Research, Vol. 41, W08401.

    Tompson, A. F. B., S. F. Carle, N. D. Rosenberg and R. M. Maxwell, 1999, Analysis of groundwater migration from artificial recharge in a large urban aquifer: A simulation perspective, Water Resources Research, Vol. 35, No. 10, p. 2981-2998.

    V. der Straaten, C. M. and W. G. Mook, 1983, Stable isotopic composition of precipition and climatic variability . In: Palaeoclimates and Palaeowaters, IAEA, Vienna, p. 53-64.

    Williams, A. E. and D. P. Rodoni, 1997, Stable isotope tracers: natural and anthropogenic recharge, Orange County, California, Journal of Hydrology, Vol. 201, p. 230-248.

    Yeh, T. C. Jim, M. Jin, and S. Hanna, 1996, An iterative stochastic inverse method: conditional effective transmissivity and hydraulic head fields, Water Resources Research, Vol. 32, No. 1, p. 85-92.

    Yeh, W. W. G., 1986, Review of parameter identification procedures in groundwater hydrology: the inverse problem, Water Resources Research, Vol. 22, No. 2, p. 95-108.

    Yurtsever, Y. and J. R. Gat, 1981, Atmospheric Water. In: J. R. Gat and Gonfiantini(eds.), Stable Isotope Hydrology: Deuterium and oxygen-18 in the water cycle, IAEA, Vienna, Tech. Rep. Ser. No.210.

    Zheng, C. and G. D. Bennett, 1995, Applied contaminant transport modeling: theory and practice, Van Nostrand Reinhold, New York.

    丁澈士,1997,應用氯離子平衡法推估地下水補注量-屏東平原個案研究,第二屆地下水資源及水質保護研討會,台南,國立成功大學, p. 703~714。

    江崇榮、汪中和,1998,屏東平原地下水區之海水入侵,屏東平原地下水及水文地質研討會論文集,三月11-12日,台北,國立台灣大學,p. 297-315。

    江崇榮、汪中和,2002,以氫氧同位素組成探討屏東平原之地下水補注源,經濟部中央地質調查所彙刊,第十五號,p. 49-67。

    何樹根、彭宗仁、汪中和、劉明星,2004,海峽兩岸地工技術岩土工程交流研討會,十一月9-11日,台北。

    汪中和、張慈君、劉文徹、劉聰桂,1997,屏東地區的同位素水文變化,長期水資源預測研討會論文彙編,五月7日,台北,國立台灣大學,p. 119-131。

    周建名,2001,屏東平原地下水人工補注之可行性評估研究,國立屏東科技大學土木工程所,碩士論文。

    胡永國,2002,應用類神經網路推估地下水位洩降所致地層沉陷之研究,國立屏東科技大學土木工程所,碩士論文。

    馬楷崴,2004,氣候變遷下屏東平原地下水資源利用之預測,國立成功大學資源工程所,碩士論文。

    張秉權、曾鈞敏,1996,屏東平原地下水量變化之研究,第八屆水利工程研討會,台北。

    陳冠志,2001,異質性土壤中二相流及溶質傳輸行為之研究,國立成功大學資源工程所,碩士論文。

    陳柏蒼、林永禎、陳昶憲,2002,利用倒傳遞類神經網路建構未設測站流量推估模式之研究,第七屆人工智慧與應用研討會論文集,十一月15日,台中,朝陽科技大學,p. 41-46。

    陳國男,2005,類神經網路應用於邊坡穩定分析及護坡工法之研究,國立成功大學資源工程所,碩士論文。

    陳智惠,2001,漫灌法對屏東平原地下水補注效益之研究,國立成功大學水利及海洋所,碩士論文。

    彭宗仁,2002,新山水庫滲流水之水文同位素解析,省自來水公司第一區管理處委辦計畫報告,31頁。

    彭宗仁、劉聰桂、汪中和,1993,屏東平原地下水穩定氫氧同位素之初步結果,地質,13卷,2期,p. 117-130。

    楊宗儒,2004,倒傳遞類神經網路於暴潮預測之研究,立德管理學院資源環境所,碩士論文。

    經濟部中央地質調查所,1997,台灣地區地下水觀測網第一期計畫八十四及八十五年度,屏東平原水文地質調查研究報告,共163頁。

    經濟部中央地質調查所,2002,屏東平原水文地質調查研究總報告,共171頁及附圖、附錄。

    經濟部水資源局,2000,高屏溪中游蓄水塘功能研究計畫報告。

    經濟部水資源局,2002,ASR地下水補注與回用先驅研究計畫-屏東昌隆ASR示範廠ASR井設置及初步循環操作測試。

    經濟部水資源統一規劃委員會,1996,隘寮溪攔河堰建立前後對地下水影響之數學模擬研究。

    葉怡成,2003,類神經網路模式應用與實作,儒林圖書有限公司。

    蔡文彬, 許全福譯,2005,數值方法:工程上應用,麥格羅.希爾。

    鄭永飛、陳江峰,2000,穩定同位素地球化學,北京:科學出版社。

    鍾芸菁,2005,應用倒傳遞類神經模式預測山坡地地下水位,國立中興大學土木工程所,碩士論文。

    下載圖示 校內:立即公開
    校外:2006-07-05公開
    QR CODE