| 研究生: |
李穎承 Li, Ying-Cheng |
|---|---|
| 論文名稱: |
噴水推進器自推實驗流場之數值模擬分析 Numerical Simulation Analysis of Flow Field in Waterjet Self-propulsion Experiment |
| 指導教授: |
陳政宏
Chen, Jeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 噴水推進 、計算流體力學 、自推實驗 |
| 外文關鍵詞: | Waterjet Propulsion, Computational Fluid Dynamics, Self-Propulsion Test |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應未來臺灣海軍面臨詭譎多變的軍事威脅,「不對稱作戰」將持續是我國國防尋求的解決方法,噴水推進器運用於軍艦將越趨頻繁,然而噴水推進器數值模擬分析與傳統螺槳推進發展仍有些落差,本研究參考ITTC噴水推進器實驗指南,在噴水推進器自推實驗受限於環境或測量儀器限制下,部分數值可透過CFD模擬軟體進行模擬獲得,除可以提升實驗效率外,亦可降低實驗成本。本次結合林瑋晉「噴水推進艦艇自推實驗技術建立與探討」研究成果,針對流量量測使用ANSYS軟體配合噴水推進器產生推力回推流量,發現實驗與模擬誤差約-10.3%~1.24%,並使用模擬軟體運用動網格及重疊網格,針對側視流向流速、流線軌跡、壓力及噴水推進器縱向剖面流速等進行圖示,有助於噴水推進器自推實驗量測儀器精度選用及輔助實驗進行。最後針對噴水推進器自推實驗結合模擬軟體執行噴水推進器自推實驗擬定初步流程。
In response to Taiwan Navy's need for adaptive defense strategies against diverse military threats, the use of water jet propulsion in naval vessels is becoming more prevalent. However, there's still a gap between numerical simulations of water jet propulsion and traditional screw propulsion development. This study combines experimental techniques with computational fluid dynamics (CFD) software to overcome limitations in water jet propulsion experiments. By referencing established guidelines, the study achieved a discrepancy of approximately -10.3% to 1.24% between experimental and simulated results. Utilizing ANSYS software, flow rates and thrust-back flow rates were measured, aiding in instrument selection and experimental design. Through dynamic mesh and overlapping mesh techniques, key flow characteristics were visualized. This integrated approach provides a preliminary framework for conducting water jet propulsion experiments, enhancing efficiency and reducing costs.
1. 沈達萭. (2017). 噴水推進器多重品質特性參數設計與流場數值模擬.﹝國防大學理工學院造船工程研究所碩士論文﹞臺灣博碩士論文知識加值系統。
2. Qiu, C., Pan, G., Huang, Q., & Shi, Y. (2020). Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow. International Journal of Naval Architecture and Ocean Engineering, 12, 102-115.
3. 蔡進發,水噴推進系統之研究,行政院國家科學委員會專題研究計畫成果報告,台北,頁1-3,1999年。
4. 謝罡(2023)。海用無槳式磁流推進器性能優化研究。﹝國防大學理工學院造船工程研究所碩士論文﹞。
5. 吳梵、陳昕,噴水推進裝置及其在艦艇上的應用,海軍工程大學學報,第15卷、第6期,頁1-5,2003年。
6. 林瑋晉(2023)。噴水推進艦艇自推實驗技術建立與探討。﹝國立成功大學系統及船舶機電工程學系碩士論文﹞。
7. 王立祥,噴水推進技術及工程設計,北京:國防工業出版社,ISBN:9787118121452,頁1-23,2021年。
8. Hoshino, T., & Baba, E. (1984). Self-propulsion test of a semi-displacement craft model with a waterjet propulsor. Journal of the Society of Naval Architects of Japan, 1984(155), 50-57.
9. N. W. H. Bulten, "Numerical analysis of a waterjet propulsion system," vol. 68, ed: Citeseer, 2006.
10. Jung, U.-H., Kim, M.-C., Chun, H.-H., & Lee, S.-H. (2009). Study on the Performance of Waterjet Propulsion System for 180ton class Fishing Guard Ship. Journal of the Society of Naval Architects of Korea, 46(2), 127-135. doi:10.3744/snak.2009.46.2.127
11. Gong, J., Guo, C.-y., Wu, T.-c., & Zhao, D.-g. (2017). Particle image velocimetry measurement of velocity distribution at inlet duct of waterjet self-propelled ship model. Journal of Hydrodynamics, 29(5), 879-893. doi:10.1016/s1001-6058(16)60800-4
12. Kim, M.-C., Park, W.-G., Chun, H.-H., & Jung, U.-H. (2010). Comparative study on the performance of Pod type waterjet by experiment and computation. International Journal of Naval Architecture and Ocean Engineering, 2(1), 1-13. doi:10.2478/ijnaoe-2013-0014
13. Seo, J., Jeong, H.-S., Rhee, S. H., & Chang, K. (2020). Towing Tank Model Tests for Propulsive Performance Analysis of a Waterjet-Propelled Amphibious Vehicle. Journal of Ship Research, 66(01), 91-107. doi:10.5957/josr.09190055
14. Odetti, A., Bruzzone, G., Altosole, M., Viviani, M., & Caccia, M. (2020). SWAMP, an Autonomous Surface Vehicle expressly designed for extremely shallow waters. Ocean Engineering, 216. doi:10.1016/j.oceaneng.2020.108205
15. Kandasamy, M., Ooi, S. K., Carrica, P., & Stern, F. (2010). Integral force/moment waterjet model for CFD simulations.
16. Eslamdoost, A., Larsson, L., & Bensow, R. (2018). Analysis of the thrust deduction in waterjet propulsion–The Froude number dependence. Ocean Engineering, 152, 100-112.
17. Eslamdoost, A., & Vikström, M. (2019). A body-force model for waterjet pump simulation. Applied Ocean Research, 90. doi:10.1016/j.apor.2019.05.017
18. Lyu, N., & Ding, J. (2020). Numerical Research on Thrust Deduction of Submerged Waterjet Propelled Transport Vessels on Inland Rivers. Paper presented at the ISOPE International Ocean and Polar Engineering Conference.
19. Jorge de Oliveira Marum, V., Reis, L. B., Maffei, F. S., Ranjbarzadeh, S., Korkischko, I., Gioria, R. d. S., & Meneghini, J. R. (2021). Performance analysis of a water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical modeling. Energy, 220.
20. Lu, L., Pan, G., & Sahoo, P. K. (2016). CFD prediction and simulation of a pumpjet propulsor. International Journal of Naval Architecture and Ocean Engineering, 8(1), 110-116. doi:10.1016/j.ijnaoe.2015.10.001
21. Zhang, Z., Chen, G., Gong, J., & Yang, C. (2022). Numerical Simulation and Experimental Verification of the Nozzle Flow of a Waterjet Model. Paper presented at the ISOPE International Ocean and Polar Engineering Conference.
22. 涂建廷(2016)。船艦噴水推進系統之實驗量測分析與參數設計研究。﹝國防大學理工學院造船工程研究所碩士論文﹞臺灣博碩士論文知識加值系統。
23. 陳昱恆(2019)。輪型載具噴水推進系統之性能分析與參數設計研究。﹝國防大學理工學院造船工程研究所碩士論文﹞臺灣博碩士論文知識加值系統。
24. Sun, H., Guo, Z., Sun, Z., Tan, G., & Zhuang, J. (2017). Experimental Study of the Propulsion Performance of a Water-Jet Planing Monohull. Paper presented at the ISOPE International Ocean and Polar Engineering Conference.
25. Zürcher, K., Bose, N., Binns, J. R., Thomas, G., & Davidson, G. (2013). Design and commissioning tests for waterjet self-propulsion testing of a medium-speed catamaran ferry using a single demihull. Paper presented at the Proceedings of the Third International Symposium on Marine Propulsor.
26. Guo, J., Zhang, Y., Chen, Z., & Feng, Y. (2020). CFD-based multi-objective optimization of a waterjet-propelled trimaran. Ocean Engineering, 195. doi:10.1016/j.oceaneng.2019.106755
27. Zhang, Z., Zhou, M., Wang, L., & Liu, J. (2021). Numerical Calculation and Experimental Verification of Thrust of a Waterjet Monohull Model. Paper presented at the ISOPE International Ocean and Polar Engineering Conference.
28. Gong, J., Liu, J.-g., Dai, Y.-x., Guo, C.-y., & Wu, T.-c. (2021). Dynamics of stabilizer fins on the waterjet-propelled ship. Ocean Engineering, 222. doi:10.1016/j.oceaneng.2021.108595
29. Jiang, F., Li, Y., & Gong, J. (2021). Study on the manoeuvre characteristics of a trimaran under different layouts by water-jet self-propulsion model test. Applied Ocean Research, 108. doi:10.1016/j.apor.2021.102550
31. A. Eslamdoost, L. Larsson, and R. Bensow, "A pressure jump method for modeling waterjet/hull interaction," Ocean Engineering, vol. 88, pp. 120-130, 2014.
31.Ansys, 2017, “Ansys Fluent Introduction”, Release 18.1,Ansys, Inc., September.
32. d’Aure, B., Mallol, B., & Hirsch, C. (2015). Resistance and Seakeeping CFD Simulations for the Korean Container Ship. Proceedings of the Tokyo, 359-364.
校內:2027-05-22公開