簡易檢索 / 詳目顯示

研究生: 莊峯琳
Chuang, Feng-Lin
論文名稱: 潤濕性梯度表面上微液滴傳輸行為及其黏著性之研究
Transport of Microdroplet along Wettability Gradient Surfaces with Variable Adhesion
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 125
中文關鍵詞: 超疏水-超親水梯度化表面超疏水/超親水圖案化表面微液滴自發性傳輸潤濕性遲滯現象黏著性
外文關鍵詞: superhydrophobic-superhydrophilic gradient surface, superhydrophobic/superhydrophilic patterned surface, spontaneously transport of microdroplet, wettability, hysteresis, adhesion
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討全潤濕性梯度表面上微液滴傳輸行為及其遲滯現象與黏著性之變化。首先運用靜電逐層組裝技術在玻璃基板表面製備出兼具透明及超親水二氧化矽奈米粒子薄膜,然後使用矽烷溶液藉由前進溶液法成功地在薄膜表面上創造出一全潤濕性譜 (從超疏水到超親水,接觸角:165° ~ 4°) 的梯度化表面,並觀察微液滴在此梯度表面上之運動行為。實驗結果顯示,奈米粒子薄膜表面雖然具有較大的接觸角梯度,但是並無法驅動微液滴;相較之下,平板玻璃潤濕性梯度表面雖然接觸角梯度較小,但卻足以驅動微液滴。此一現象促使本研究進一步探討奈米粒子薄膜及平板玻璃表面,由低至高的矽烷疏水改質程度下之遲滯現象及黏著性。由實驗結果得知,在平板玻璃上的遲滯現象及黏著性都較小且很相近;反觀在二氧化矽奈米粒子薄膜上則展現出先由小至大,再由大至小之極大的變化。本研究亦提出造成此一差異的可能機制。這些不同黏著性的表面,皆具有極大的應用價值。此外,超疏水/超親水楔型圖案化表面亦可成功地驅動微液滴自發性傳輸。

    This work aims at studying transport of microdroplet and the variation of hysteresis and adhesion along total wettability gradient surfaces. An electrostatic layer-by-layer (ELbL) assembly process was utilized to fabricate transparent and superhydrophilic nanoparticulate thin films on glass substrate. After that, the transparent and superhydrophobic-superhydrophilic (contact angle: 165° ~ 4°) gradient surface with total wettability spetrum was successfully fabricated through advancing solution method with silane solution on the nanoparticulate thin film. Moving behaviors of microdroplet on wettability gradient surface of plain glass and SiO2 nanoparticulate thin film were then observed. Experiment shows the SiO2 nanoparticulate thin film exhibits larger gradient of contact angle, but it cannot drive microdroplet to transport. In contrast, although the plain glass has smaller gradient of contact angle, but it is enough to drive microdroplet to transport spontaneously. This phenomenon promotes further study of the variable hysteresis and adhesion on SiO2 nanoparticulate thin film and plain glass from low to high degree of silanization. From experimental results, both the hysteresis and adhesion are small and very simillar on palin glass. However, the hysteresis and adhesion exihibit extreme variation which goes through a maximum and drops off at higher degree of silanization on SiO2 nanoparticulate thin film. This work also proposes a possible mechanism for the difference. All of the surfaces with different adhesion have many potential applications. Furthermore, superhydrophobic/superhydrophilic wedge-shaped patterned surfaces were created and the spontaneous transport of microdroplet was successfully demonstrated.

    目 錄 摘 要 I ABSTRACT II 致 謝 IV 目 錄 V 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言 2 1-2 研究動機與目的 3 第二章 文獻回顧 5 2-1 超疏水自潔表面-蓮花效應 6 2-2 超疏水表面理論模式 9 2-2-1 楊氏 (Yang) 方程式 11 2-2-2 溫佐 (Wenzel) 方程式 12 2-2-3 卡西-巴斯特 (Cassie and Baxter) 方程式 13 2-2-4 遲滯接觸角 (Contact angle hysteresis) 14 2-3 表面疏水改質 15 2-4 超疏水-超親水:表面梯度化 (Gradient) 18 2-5 潤濕性梯度驅動微液滴自發性傳輸 24 2-6 液固黏著性 (Liquid-solid adhesion) 27 2-6-1 結構 (物理性質) 對黏著性之影響 (Structure adhesion) 28 2-6-2 組成 (化學性質) 對黏著性之影響 (Composition adhesion) 31 2-6-3 方向性對黏著性之影響 (Directional adhesion) 32 2-7 超疏水/超親水:表面圖案化 (Patterning) 34 第三章 實驗 40 3-1 實驗藥品 41 3-2 儀器設備及裝置 43 3-2-1 Milli-Q超純水系統 43 3-2-2 超音波震盪器 (Ultrasonic cleaner) 43 3-2-3 雷射光散射法粒徑測定儀 (Zeta-sizer) 44 3-2-4 浸鍍機/機械手臂 (Dip-coater) 45 3-2-5 箱型高溫爐 46 3-2-6 靜態接觸角測量儀 47 3-2-7 動態接觸角分析儀 (Dynamic Contact Angle Analyzer, DCA) 48 3-2-8 紫外光-可見光 (UV-vis) 光譜儀 51 3-2-9 原子力顯微鏡 (Atomic Force Microscope, AFM) 52 3-2-10 CO2 Laser 雕刻機 53 3-3 實驗方法 54 3-3-1玻璃基板的前置清洗流程 54 3-3-2 聚電解質溶液的配製 54 3-3-2-1 SiO2粒子溶液配製 55 3-3-2-2多層膜之製備:靜電逐層組裝技術 55 3-3-3 SiO2奈米粒子薄膜鍛燒 57 3-3-4 平板玻璃及SiO2奈米粒子薄膜的疏水改質 57 3-3-5 平板玻璃及SiO2奈米粒子薄膜表面潤濕性梯度化製備 58 3-3-6 平板玻璃及SiO2奈米粒子薄膜表面圖案化製備 59 第四章 結果與討論 61 4-1 透明超親水/超疏水SiO2奈米粒子薄膜 62 4-2 梯度化表面 63 4-2-1 不同總浸泡時間對潤濕性梯度的影響 64 4-2-2 不同浸泡長度對潤濕性梯度的影響 66 4-2-3 超疏水-超親水梯度化表面 69 4-2-4 疏水-親水梯度化表面 72 4-3 微液滴在潤濕性梯度表面上運動行為之研究及探討 75 4-3-1 平板玻璃之潤濕性梯度表面上微液滴的運動行為 75 4-3-2 SiO2奈米粒子薄膜之潤濕性梯度表面上微液滴的運動行為 77 4-3-3 兩種潤濕性梯度表面上微液滴運動行為差異之探討 81 4-4 不同疏水改質程度對兩種基板的潤濕性及黏著力之影響及探討 83 4-4-1 平板玻璃與SiO2奈米粒子薄膜之不同潤濕性探討 83 4-4-2 平板玻璃上其潤濕性及平行方向之黏著性 86 4-4-3 SiO2奈米粒子薄膜上其潤濕性及平行方向之黏著性 89 4-4-4 SiO2奈米粒子薄膜上其垂直方向之黏著性 –液固接觸行為 (Touching behavior) 92 4-4-5 SiO2奈米粒子薄膜上其垂直方向之黏著性–液體在固體表面 上之彈跳行為 (Bouncing behavior) 93 4-5 不同疏水改質程度下之假設性機制及其探討 95 4-5-1平板玻璃上隨著不同疏水改質程度下之假設性機制及其探討 95 4-5-2 SiO2奈米粒子薄膜上隨著不同疏水改質程度下之假設性機制 及其探討 96 4-6 潤濕性梯度表面上傳輸行為與單向拓展行為差異之探討 99 4-7 楔型圖案化表面 104 第五章 結論與建議 110 5-1 結論 111 5-2 建議 112 參考文獻 114 附錄 123 二氧化矽奈米粒子薄膜之疏油性 (oleophobicity) 測試 123 自述 125

    參考文獻
    [1] Barthlott, W.; Neinhuis, C., Purity of the Sacred Lotus, or Escape
    from Contamination in Biological Surfaces. Planta 1997, 202, 1-8.
    [2] Neinhuis, C.; Barthlott, W., Characterization and Distribution of
    Water-Repellent, Self-Cleaning Plant Surfaces. Ann. Bot. 1997, 79,
    667-677.
    [3] Fujishima, A.; Zhang, X., Titanum Dioxide Photocatalysis: Present
    Situation and Future Approaches. Comptes Rendus Chimie 2006, 9,
    750-760.
    [4] Feng, X.; Jiang, L., Design and Creation of Superwetting/Antiwetting
    Surfaces. Adv. Master. 2006, 18, 3063-3078.
    [5] Zhai, L.; Berg, M.; Cebeci, F.C.; Kim, Y.; Milwid, J. M.; Rubner, M. F.;
    Cohen, R. E., Patterned Superhydrophobic Surfaces: Toward a
    Synthetic Mimic of the Namib Desert Beetle. Nano Lett. 2006, 6,
    1213-1217.
    [6] Morgenthaler, S.; Zink. C.; Spencer. N. D., Surface-Chemical and
    -Morphological Gradients. Soft Matter 2008, 4, 419-434.
    [7] Parkin, I. P.; Palgrave, R. G., Self-Cleaning Coatings. J. Mater.
    Chem. 2005, 15, 1689-1695.
    [8] Shiu, J. Y.; Kuo, C. W.; Chen, P.; Mou, C. Y., Fabrication of Tunable
    Superhydrophobic Surfaces by Nanosphere Lithography. Chem. Mater.
    2004, 16, 561-564.
    [9] Marmur, A., The Lotus Effect: Superhydrophobicity and Metastability.
    Langmuir 2004, 20, 3517-3519.
    [10] Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water.
    Ind. Eng. Chem. 1936, 28, 988-994.
    [11] Cassie, A. B. D.; Baxter, S., Wettability of Porous Surfaces. Trans.
    Faraday Soc. 1944, 40, 546-551.
    [12] Hiemenz, P. C., Principles of Colloid and Surface Chemistry, Second
    Edition. Marcel Dekker: New York, 1986.
    [13] Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.;
    McCarthy, T. J., Ultrahydrophobic and Ultralyophobic Surfaces:
    Some Comments and Examples. Langmuir 1999, 15, 3395-3399.
    [14] Vansant, E. F.; Van Der Voort, P.; Vrancken, K. C., Characterization
    and Chemical Modification of the Silica Surface. Elsevier:
    Amsterdam, 1995.
    [15] Plueddeman, E. P., Silane Coupling Agents. Plenum Press: New
    York, 1991.
    [16] Vallant, T.; Kattner, J.; Brunner, H.; Hoffmann, H., Investigation of
    the Formation and Structure of Self-Assembled Alkylsiloxane
    Monolayers on Silicon Using in Situ Attenuated Total Reflection
    Infrared Spectroscopy. Langmuir 1999, 15, 5339-5346.
    [17] Chen, L. J.; Tsai, Y. H.; Liu, C. S.; Chiou, D. R.; Yeh, M. C., Effect
    of Water Content in Solvent on the Critical Temperature in the
    Formation of Self-assembled Hexadecyltrichlorosilane Monolayers
    on Mica. Chem. Phys. Lett. 2001, 346, 241-245.
    [18] Jesionowski, T.; Krysztafkiewicz, A., Influence of Silane Coupling
    Agents on Surface Properties of Precipitated Silicas. Appl. Surf. Sci.
    2001, 172, 18-32.
    [19] McGovern, M. E.; Kallury, K. M. R.; Thompson, M., Role of
    Solvent on the Silanization of Glass with Octadecyltrichlorosilane.
    Langmuir 1994, 10, 3607-3614.
    [20] 張鑑祥; 楊毓民, 分子層級的薄膜表面型態控制-逐層組裝技
    術. 化工技術 2004, 12,135-144.
    [21] Ruardy, T. G.; Schakenraad, J. M.; Mei, H. C.; Busscher, H. J.,
    Preparation and Characterization of Chemical Gradient Surfaces and
    Their Application for the Study of Cellular Interaction Phenomena.
    Surf. Sci. Rep. 1997, 29, 3–30.
    [22] Yu, X.; Wang, Z. Q.; Jiang, Y. G.; Zhang, X., Surface Gradient
    Material: From Superhydrophobicity to Superhydrophilicity.
    Langmuir 2006, 22, 4483–4486.
    [23] Han, J. T.; Kim, S.; Karim, A., UVO-Tunable Superhydrophobic to
    Superhydrophilic Wetting Transition on Biomimetic Nanostructured
    SurfacesLangmuir. Langmuir 2007, 23, 2608–2614.
    [24] Chaudhury, M. K.; Whitesides, G. M., How to Make Water Run
    Uphill. Science 1992, 256, 1539-1541.
    [25] Daniel, S.; Chaudhury, M. K., Rectified Motion of Liquid Drops on
    Gradient Surfaces Induced by Vibration. Langmuir 2002, 18,
    3404-3407.
    [26] Petrie, R. J.; Bailey, T.; Gorman, C. B.; Genzer, J., Fast Directed
    Motion of “Fakir” Droplets. Langmuir 2004, 20, 9893-9896.
    [27] Zhu, X.; Wang, H.; Liao, Q.; Ding, Y. D.; Gu, Y. B., Experiments and
    Analysis on Self-Motion Behaviors of Liquid Droplets. Exp. Therm.
    Fluid Sci. 2009, 33, 947-954.
    [28] Sun, C.; Zhao, X.W.; Han, Y. H.; Gu, Z. Z., Control of Water Droplet
    Motion by Alteration of Roughness Gradient on Silicon Wafer by
    Laser Surface Treatment. Thin Solid Films 2008, 516, 4059-4063.
    [29] Lai, Y. H.; Yang, J. T.; Shieh, D. B., A Microchip Fabricated with a
    Vapor-Diffusion Self-Assembled-Monolayer Method to Transport
    Droplets across Superhydrophobic to Hydrophilic Surfaces. Lab
    Chip 2010, 10, 499-504.
    [30] Jin, M.; Feng, X.; Xi, J.; Zhai, J.; Cho, K.; Feng, L.; Jiang, L.,
    Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive
    Force. Marcromol. Rapid Commun. 2005, 26, 1805-1809.
    [33] Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L.,
    Superhydrophobic Alihned Polystyrene Nanotube Films with High
    Adhesive Force. Adv. Mater. 2005, 12, 1977-1981.
    [31] Guo, Z. G.; Liu, W. M., Sticky Superhydrophobic Surface. Appl.
    Phys. Lett. 2007, 90, 223111.
    [32] Li, Y.; Zheng, M.; Ma, L.; Zhong, M.; Shen, W., Fabrication of
    Hierarchical ZnO Architectures and Their Superhydrophobic
    Surfaces with Strong Adhesive Force. Inorg. Chem. 2008, 47,
    3140-3143.
    [34] Xi, J.; Jiang, L., Biomimic Superhydrophobic Surfaces with High
    Adhesive Forces. Ind. Eng. Chem. Res. 2008, 47, 6354–6357.
    [35] Oner, D.; McCarthy, T. J., Ultrahydrophobic Surfaces. Effects of
    Topography Length Scales on Wettability. Langmuir 2000, 16,
    7777-7782.
    [36] Zhao, Y.; Lu, Q. H.; Chen, D. S.; Wei, Y., Superhydrophobic
    Modification of Polyimide Films Based on Gold-Coated Porous
    Silver Nanostructures and Self-Assembled Monolayers. J. Mater.
    Chem. 2006, 16, 4504-4509.
    [37] Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y.
    K., “Lock-and-Key” Geometry Effect of Patterned Surfaces:
    Wettability and Switching of Adhesive Force. Small 2009, 5, 90-94.
    [38] Jung, Y. C.; Bhushan, B., Dynamic Effects Induced Transition of
    Droplets on Biomimetic Superhydrophobic Surfaces. Langmuir 2009,
    25, 9208-9218.
    [39] Lai, B. Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L.,
    Designing Superhydrophobic Porous Nanostructures with Tunable
    Water Adhesion. Adv. Mater. 2009, 21, 3799-3803.
    [40] Song, X. Y.; Zhai, J.; Wang, Y. L.; Jiang, L., Fabrication of
    Superhydrophobic Surfaces by Self-Assembly and Their
    Water-Adhesion Properties. J. Phys. Chem. B 2005, 109, 4048-4052.
    [41] Boduroglu, S.; Cetinkaya, M.; Dressick, W. J.; Singh, A.; Demirel,
    M. C., Controlling the Wettability and Adhesion of Nanostructured
    Poly-(p-xylylene) Films. Langmuir 2007, 23, 11391-11395.
    [42] Balu, B.; Breedveld, V.; Hess, D. W., Fabrication of “Roll-off” and
    “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing.
    Langmuir 2008, 24, 4785-4790.
    [43] Khoo, H. S.; Tseng, F. G., Engineering the 3D Architecture and
    Hydrophobicity of Methyltrichlorosilane Nanostructures.
    Nanotechnology 2008, 19, 345603.
    [44] Lai, Y.; Lin, C.; Huang, J.; Zhuang, H.; Sun, L.; Nguyen, T.,
    Markedly Controllable Adhesion of Superhydrophobic Spongelike
    Nanostructure TiO2 Films. Langmuir 2008, 24, 3867-3873.
    [45] Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K., Effects
    of Surface Structure on the Hydrophobicity and Sliding Behavior of
    Water Droplets. Langmuir 2002, 18, 5818-5822.
    [46] Chen, Y.; He, B.; Lee, J.; Patankar, N. A., Anisotropy in the Wetting
    of Rough Surfaces. J. Colloid Interface Sci. 2005, 281, 458-464.
    [47] Zheng, Y.; Gao, X.; Jiang, L., Directional Adhesion of
    Superhydrophobic Butterfly Wings. Soft Matter 2007, 3, 178-182.
    [48] Sun, G.; Fang, Y.; Cong, Q.; Ren, L. Q., Anisotropism of the
    Non-Smooth Surface of Butterfly Wing. J. Bionic Eng. 2009, 6,
    71-76.
    [49] Zhang, J.; Cheng, Z.; Zheng, Y.; Jiang, L., Ratchet-Induced
    Anisotropic Behavior of Superparamagnetic Microdroplet. Appl.
    Phys. Lett. 2009, 94, 144104.
    [50] Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired Super-antiwetting
    Interfaces with Special Liquid-Solid Adhesion. Accounts Chem. Res.
    2010, 43, 368-377.
    [51] Tadanaga, K.; Morinaga, J.; Matsuda, A.; Minami, T.,
    Superhydrophobic-Superhydrophilic Micropatterning on Flowerlike
    Alumina Coating Film by the Sol-Gel Method. Chem. Mater. 2000,
    12, 590-592.
    [52] Lim, H. S.; Han, J. T.; Kwak, D.; Jin, M.; Cho, K., Photoreversibly
    Switchable Superhydrophobic Surface with Erasable and Rewritable Pattern. J. Am. Chem. Soc. 2006, 128, 14458-14459.
    [53] Nishimoto, S.; Kubo, A.; Nohara, K.; Zhang, X.; Taneichi, N.; Okui, T.; Liu, Z.; Nakata, K.; Sakai, H.; Murakami, T.; Abe, M.; Komine, T.; Fujishima, A., TiO2-Based Superhydrophobic–Superhydrophilic Patterns: Fabrication via an Ink-Jet Technique and Application in Offset Printing. Appl. Surf. Sci. 2009, 255, 6221-6225.
    [54] Parker, R; Lawrence, C. R., Water Capture by A Desert Beetle. Nature 2001, 414, 33-34.
    [55] Lopez, G. P.; Biebuyck, H. A.; Frisbie, C. D.; Whitesides, G. M., Imaging of Features on Surfaces by Condensation Figures. Science 1993, 260, 647-649.
    [56] Drelich, J.; Miller, J. D.; Kumar, A.; Whitesides, G. M., Wetting Characteristics of Liquid Drops at Heterogeneous Surfaces. Colloids Surf. A. 1994, 93, 1-13.
    [57] Sun, T.; Wang, G.; Liu, H.; Feng, L.; Jiang, L.; Zhu, D., Control over the Wettability of an Aligned Carbon Nanotube Film. J. Am. Chem. Soc. 2003, 125, 14996-14997.
    [58] Kim, H.; Kreller, C. R.; Tran, K. A.; Sisodiya, V.; Angelos, S.; Wallraff, G.; Swason, S.; Miller, R. D., Nanoporous Thin Films with Hydrophilicity-Contrasted Patterns. Chem. Mater. 2004, 16, 4267-4272.
    [59] Gau, H.; Herminghaus, S.; Lenz, P.; Lipowsky, R., Liquid Morphologies on Structured Surfaces: From Microchannels to Microchips. Science 1999, 283, 46-48.
    [60] Hsu, C. H.; Chen, C.; Folch, A., Microcanals for Micropipette Access to Single Cells in Microfluidic Environments. Lab Chip 2004, 4, 420-424.
    [61] Xu, Q. F.; Wang, J. N.; Smith, L. H.; Sanderson, K. D., Directing the Transportation of a Water Droplet on a Patterned Superhydrophobic Surface. Appl. Phys. Lett. 2008, 93, 233112.
    [62] Khoo, H. S.; Tseng, F. G., Spontaneous High-Speed Transport of
    Subnanoliter Water Droplet on Gradient Nanotextured Surfaces.
    Appl. Phys. Lett. 2009, 95, 063108.
    [63] Pirrung, M. C., How to Make a DNA Chip. Angew. Chem. Int. Ed. 2002, 41, 1276-1289.
    [64] Ito, Y.; Nogawa, M., Preparation of a Protein Micro-Array Using a Photo-Reactive Polymer for a Cell-Adhesion Assay. Biomaterials 2003, 4, 3021-3026.
    [65] Orner, B. P.; Derda, R.; Lewis, R. L.; Thomson, J. A.; Kiessling, L. L., Arrays for the Combinatorial Exploration of Cell Adhesion. J. Am. Chem. Soc. 2004, 126, 10808-10809.
    [66] Gu, Z. Z.; Fujishima, A.; Sato, O., Patterning of a Colloidal Crystal Film on a Modified Hydrophilic and Hydrophobic Surface. Angew. Chem. Int. Ed. 2002, 41, 2067-2070.
    [67] Lin, Y. H.; Su, K. L.; Tsai, P. S.; Chuang, F. L.; Yang, Y. M.,
    Fabrication and Characterization of Transparent
    Superhydrophilic/Superhydrophobic Silica Nanoparticulate Thin
    Films. Thin Solid Films 2011, 519, 5450-5455.
    [68] Feng, L.; Zhang, Z.; Mai, Z.; Ma, Y.; Liu, B.; Jiang, L.; Zhu, D., A
    Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for
    the Separation of Oil and Water. Angew. Chem. 2004, 116,
    2046-2048.
    [69] 李濤; 劉長松; 張強; 李志文, ZnO基超疏水表面的製備及其與
    水黏著性研究. 中國科技論文在線精品論文 2009, 2, 2417-2421.
    [70] Hsieh, C. T.; Wu, F. L.; Chen, W. Y., Superhydrophobicity and
    Superoleophobicity from Hierarchical Silica Sphere Stacking Layers. Mater. Chem. Phys. 2010, 121, 14-21.

    下載圖示 校內:2013-07-13公開
    校外:2013-07-13公開
    QR CODE