| 研究生: |
王思婷 Wang, Shi-Ting |
|---|---|
| 論文名稱: |
具核殼結構的磁性微脂粒之熱效應研究 The Study on Heating Effect of Magnetic Core-Shell Liposome |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 熱治療 、核殼結構 、磁性微脂粒 、氧化鐵 |
| 外文關鍵詞: | core-shell structure, hyperthermia, iron oxide, Magnetic liposome |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於癌症已蟬聯國人十大死因之首26年,因此癌症治療的研究ㄧ直都是生醫技術相當重要的方向,尤其是副作用低、溫和而有效的治療方法。而熱治療是近年來相當受重視的一種療法,本研究希望結合磁性微脂粒、核殼結構、藥物標的釋放等技術來製備出複合功能的磁性微脂粒作為熱治療的藥劑,期望能提供熱治療技術一個有益的方向。
本研究以共沉澱法製備磁性氧化鐵奈米粒子,並以十二碳酸修飾避免磁性奈米粒子的聚集。利用熱重分析儀(TGA)、傅立葉紅外光分析儀(FT-IR)、X-ray繞射儀(XRD)與超導量子干涉震動磁量儀(SQUID)分析結構與特性,以穿透式電子顯微鏡(TEM)、奈米粒徑電位分析儀 (Zeta-Sizer)分析粒徑大小,由測試結果知道修飾後氧化鐵奈米粒子粒徑較小而飽和磁化強度下降。
核殼結構磁性微脂粒的核種材料有三種: PMMA、生物相容的二氧化矽與作為藥物替代物的甲殼素(Chitosan)奈米粒子,分別進行測試,以深入討論製備影響因素。以薄膜水合法包覆磁性氧化鐵奈米粒子與核奈米粒子,成為核殼結構的磁性微脂粒。利用TEM影像分析微脂粒的包覆結果與分散性,以確認較佳製備條件。接著以高週波電感應加熱機模擬熱治療環境測試微脂粒的加熱效果,在15分鐘的測試時間內觀察樣本的最大溫度變化,測試結果發現氧化鐵含量越高,包覆情形越好的微脂粒,升溫速率越高。而以PMMA奈米粒子與二氧化矽奈米粒子做核心粒子的核殼結構磁性微脂粒有較好的包覆結果,並在15分鐘內達到大於5 (℃/4ml待測溶液)的溫度變化;以甲殼素奈米粒子做核心粒子做核殼結構磁性微脂粒,因包覆成果不好而升溫速率不佳。
Cancer has been at the head of the top ten causes of death for last two decades. Therefore, cancer therapy was always the most important thing in biotechnologic researches, especially in lowing side effect, and more effective and mild therapys. Because cancer therapy was recently focoused on hyperthermia, the aim of this research was to synthesize the magnetic liposomes with complex function by combining the technology of magnetic core-shell liposome and targeting drug delivery. This magnetic core-shell liposome would be used in hyperthermia and provided a useful way for hyperthermia technology.
In this study, magnetic ferric oxide nanoparticles were firstly synthesized by coprecipitation method, and then the surface was modified by lauric acid to prevent the aggregation of magnetic nanoparticles. The structure and properties of magnetic nanoparticles were analyzed by TGA, FT-IR, XRD, and SQUID. The particle size was analyzed by TEM and Zeta-Sizer. The results indicated that modified ferric oxide nanoparticles had lower particle size and saturation magnetization than unmodified nanoparticles.
PMMA, biocompatible silica, and chitosan were used as core materials in magnetic core-shell liposome. PMMA, and biocompatible silica, were used to study preparing condition and affecting factors of synthesis, respectively. Chitosan was used as a substitute of drug. Core nanoparticles were encapsulated with lipid film that attached magnetic ferric oxide nanoparticles by thin film hydration method. In order to obtain the better condition of synthesis, encapsulating result and dispersion of liposomes were analysized by TEM. In hyperthermia, heating efficiency of liposomes were simulate by high frequency machine. The experiment could get maximum difference of temperature in fifteen minutes. The higher amount of iron oxide nanoparticles and better encapsulation would cause higher heating rate. In the study of encapsulation, PMMA and silica nanoparticles used as core materials of magnetic core-shell liposome showed better encapsulated result. The temperature changes which PMMA and silica nanoparticles used as core of over 5℃ per 4 milliliter could be reached in fifteen minutes. Nevertheless, the magnetic core-shell liposome using chitosan as a core had bad heating efficiency because of bad encapsulation.
[1]Chen, D.-H., “Introduction to Nanobiotechnology”, 2006
[2]奈米科技教學,第二章:奈米材料之結構與特性,12-17
[3]Leslie-Pelecky, D. L., Rieke, R. D., “Magnetic Properties of Nanostructured Materials”, Chemistry of Materials, 8, 1770-1783, 1996
[4]Bangham, A. D., Standish, M. M., Watkins, J. C., “Diffusion of univalent ions across the lamellae of swollen phospholipids”, J. Mol. Biol. 13, 238–52, 1965
[5]Cuyper, M-D., Müller, H. L., Hodenlus, M., “Synthesis of magnetic Fe3O4 particles covered with a modifiable phospholipid coat”, J. Phys.: Condens. Matter, 15, 1425-1436, 2003
[6]Gonzales, M.,Krishnan, K. M., “Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia”, J. Magn. Magn. Mater., 293(1), 265-270, 2005
[7]Solera, M.A.G., da Silvaa, S.W., Meloa, T.F.O., Cuyperb, M. De, Morais, P.C., “Raman spectroscopy of magnetoliposomes”, J. Magn. Magn. Mater., 252, 415-417, 2002
[8]T., Pedro, Del P. M., Maria, Veintemillas-V., Sabino, Gonzalez-C., Teresita, S., Carlos J., “The preparation of magnetic nanoparticles for applications in biomedicine”, J. Phys. D-Appl. Phys., 36, R182-R197, 2003
[9]Safarikova, M, Safarik, I., “Magnetic solid-phase extraction”, J. Magn. Magn. Mater., 194, 108-112, 1999
[10]Lange, J., Kotitz, R., Haller, A., Trahms, L., Semmler, W., Weitschies, W., ” Magnetorelaxometry - A new binding specific detection method based on magnetic nanoparticles.”, J. Magn. Magn. Mater., 252, 381-383, 2002
[11]Jana, N. R., Chen, Y., Peng, X., “Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach”, Chem. Mater., 16, 3931-3935, 2004Cuyper, M-D., Joniau, M., “Magnetoliposomes-Formation and structural characterization”, Eur. Biophys. J., 15, 311-319, 1988
[12]Zhanga, W. S., Brück, E., Zhang, Z. D., Tegus, O., Li, W. F., Si, P. Z., Geng, D.Y., Buschow, K. H. J., “Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles”, Physica B, 358, 332–338, 2005
[13]Lu, Y., Lu, X., Mayers, B. T., Herricks, T., Xi, Y., “Synthesis and characterization of magnetic Co nanoparticles: A comparison study of three different capping surfactants”, J. Solid State Chem., 181, 1530-1538, 2008
[14]Cuyper, M-D., Joniau, M., “Magnetoliposomes-Formation and structural characterization”, Eur. Biophys. J., 15, 311-319, 1988
[15]Cuyper, M-D., Noppe, W., “Extractability of the Phospholipid Envelope of Magnetoliposomes by Organic Solvents”, J. Colloid Interface Sci., 182, 478-482, 1996
[16]Cuyper, M-D., Joniau, M., “Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized magnetite nanocolloids”, Langmuir, 7, 647-652, 1991
[17] Nawroth, T., Rusp, M. May, R. P., Magnetic liposomes and entrapping : time-resolved neutron scattering TR-SANS and electron microscopy., Physica B, 350, e635–e638, 2004
[18]Roberts, D., Zhu, W. L., Frommen, C. M., Rosenzweig, Z., “Synthesis of gadolinium oxide magnetoliposomes for magnetic resonance imaging”, J. Phys. Appl., 87, 6208-6210, 2000
[19]Menager, C., Cabuil, V., “Synthesis of magnetic liposomes”, J.Colloid Interf Sci., 169, 251-253, 1995
[20]Toshihiro, M., Takashi, S., Tadahiko, K., Yuji Y., Mitsuo, O., Teruo, M., “Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model”, J. Biomed. Mater. Res. Part A, 66A, 747-754, 2003
[21]Giri, J., Guha Thakurta, S., Bellare, J. Kumar Nigam, A., Bahadur, D., “Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles”, J. Magn. Magn. Mater., 293(1), 62-68,2005
[22]Pradhana, P., Girib, J., Banerjeea, R., Bellarea, J., Bahadurb, D., “Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer”, J. Magn. Magn. Mater., 311, 208–215, 2007
[23]Tsunehiro, M., Kensuke, K., Tatsuo, K., Hiromichi, A., Takashi, N., Hiroyuki, K., Yuji W., Kanji K., “Heating of Ferrite Powder by an AC Magnetic Field for Local Hyperthermia”, Jpn. J. Appl. Phys., 41, 1620–1621, 2002
[24]Merbach, A. E., Tóth, E., “The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging”, Chichester, UK: Wiley, 2001
[25]Wormuth, K., “Superparamagnetic latex via inverse emulsion polymerization”, J. Colloid Interface Sci., 241, 366-377, 2001
[26]Portet, D., Denizot, B., Rump, E., Lejeune, J. J., Jallet, P., “Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents”, J. Colloid Interface Sci., 238, 37-42, 2001
[27]Sugimoto, T., Fine Particles: Synthesis, Characterisation and Mechanism of Growth, New York: Marcel Dekker, 2000
[28]Massart, R., Cabuil, V., J. Chem. Phys., 84, 967, 1987
[29]Pileni, M. P., “Reverse micelles as microreactors”, J. Phys. Chem., 97, 6961-6973, 1993
[30]Wang, X., Zhuang, J., Peng, Q., Li, Y., “A general strategy for nanocrystal synthesis”, Nature, 437, 121-124, 2005
[31]Goya, G. F., “Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling”, Solid State Commun., 130, 783-787, 2004
[32]Messing, G. L., Zhang, S., Jayanthi, G. V., “Ceramic powder synthesis by spray pyrolysis”, J. Am. Ceram.Soc., 76, 2707-2726,1993
[33]Lu, Y., Fan, H., Stump, A., Ward, T. L., Rieker, T., Brinker, C. J., “Aerosol-assisted self-assembly of mesostructured spherical nanoparticles”, Nature, 398, 223-226, 1999
[34]Veintemillas-Verdaguer, S., Morales, M. P., Serna, C. J., Mater. Lett., 35, 227-231, 1998
[35]Imrie, C., Engelbrecht, P., Loubser, C., McCleland, C. W., “Monosubstituted thermotropic ferrocenomesogens: an overview 1976-1999”, J., Appl. Organomet. Chem., 15, 1-15, 2001
[36]Lu, An-Hui, Salabas, E. L., Schüth, F., “Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application”, Angew. Chem. Int. Ed., 46, 1222-1244, 2007
[37]Tartaj, P., Morales, María del P., Veintemillas-Verdaguer, S., González-Carreño, T., Serna, C. J., “The preparation of magnetic nanoparticles for applications in biomedicine”, J. Phys. D: Appl. Phys., 36, R182–R197, 2003
[38]Breasted, J.H., Therapeutic heat and cold, 2nd ed., Waverly Press, The Edwin Smith surgical payrus, Licht, S., editor, p.196, 1965
[39]Overgaard, J., History and heritage e an introduction, Overgaard, J., editor. Hyperthermic oncology, 2. London: Taylor and Francis, 3-8, 1985
[40]Storm, F. K., Background, principles, and practice, Storm, F. K., editor, Hyperthermia in cancer therapy, Boston: G. K. Hall, 1-8, 1983
[41]Coley, N. H., Fowler, G. A., Bogatko, F. H., “A review of the influence of bacterial infection and bacterial products (Coley’s toxins) on malignant tumours in man”, Acta. Med. Scand., 274, 29-97, 1953
[42]Westermark, F., “Uber die behandlung des ulceration cervixcarcinoma mittels konstanter warme”, Zentralbl Gynaekol, 22, p.1335, 1898
[43]Conway, J., Anderson, A. P., “Electromagnetic techniques in hyperthermia”, Clin. Phys. Physiol. Meas., 7(4), 287-318, 1986
[44]Dewey, W. C., Sapareto, L. A. L., Gerweck, E., “Cellular responses to combinations of hyperthermia and radiation”, Radiology, 123, 463 – 474, 1977
[45]王威治,”磁性微脂粒製備之研究”,國立成功大學化學工程系碩士論文,2006
[46]Wang, X., Yang, L., Chen, Z., Shin, D. M., “Application of Nanotechnology in Cancer Therapy and Imaging”, CA Cancer J. Clin., 58(2), 97-110, 2008
[47]Kong, G., Anyarambhatla, G., Petros, W. P., Braun, R. D., Colvin, O. M., Needham, D., Dewhirst, M. W.,“Efficacy of Liposomes and Hyperthermia in a Human Tumor Xenograft Model: Importance of Triggered Drug Release”, Cancer Res., 60, 6950-6957, 2000
[48]El-Sayed, A. H., Aly, A. A., EI-Sayed, N. I., Mekawy, M. M., EI-Gendy, A. A., “Calculation of heating power generated from ferromagnetic thermal seed (PdCo-PdNi-CuNi) alloys used as interstitial hyperthermia implants”, J. Mater. Sci.: Mater. Med., 18, 523–528, 2007
[49]Hall, E. J., “ Hyperthermia”, Radiobiology for the radiologist, 5th ed., p.504, Philadelphia, L. W., Wilkins, 2000
[50] Diederich, C. J., Hynynen, K., “Ultrasound technology for hyperthermia”, Ultrasound Med. Biol., 25(6), 871-887, 1999
[51]Hynynen, K., Ultrasound heating technology, Thermoradiotherapy and Thermochemotherapy, Biology, Physiology, Physics, 1, Seegenschmiedt, M. H., Fessenden, P., Vernon, C. C., editor,.Berlin: Springer, 253-278, 1995
[52]Lin, W.-L., Chen, Y.-Y., Yen, J.-Y.: “Technical consideration for advanced ultrasound hyperthermia system development”, Jpn. J. Hyper. Oncol., 14, S59-S61, 1998
[53]Manak, I., Lisenkova, A., Nikolaeva, A., “Laser hyperthermia: Problems and solutions”, Proceedings of SPIE, 5566, SOS'03, 178-184,2004
[54]Tompkins, D. T., Vanderby, R., Klein, S. A., Beckman, W. A., Steeves, R. A., Paliwal, B. R., “Effect of Interseed Spacing, Tissue Perfusion, Thermoseed Temperatures and Catheters in Ferromagnetic Hyperthermia: Results from Simulations Using Finite Element Models of Thermoseeds and Catheters”, IEEE Trans. Biomed. Eng., 41(10), 975-985,1994
[55]Jordan, A., Scholz, R., Wust, P., Faehling, H., Felix, R., “Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles”, J. Magn. Magn. Mater., 201, 413-419, 1999
[56]Qian, W. P., Gu, Z. Z., Fujishima, A., Sato, O., “Three-dimensionally ordered macroporous polymer materials: An approach for biosensor applications”, Langmuir, 18(11), 4526-4529, 2002
[57] Goldman, E. R., Clapp, A. R., Anderson, G. P., Uyeda, H. T., Mauro, J. M., Medintz, I. L., Mattoussi, H., “Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents “, Anal. Chem., 76(3), 684-688, 2004
[58] Freiberg, S., Zhu, X., “Polymer microspheres for controlled drug release “, Int. J. Pharm., 282 (1-2), 1-18, 2004.
[59]Lima, J., Tilton, R. D., Eggeman, A., Majetich, S. A., “Design and synthesis of plasmonic magnetic nanoparticles”, J. Magn. Magn. Mater., 311, 78–83, 2004
[60]Lin, F.-H., Doong, R.-A., “Fabrication and Biomedical Application of Core-Shell Nanoparticles”, Instrum. Today, 18(1), 7-16, 2006
[61]Koo, O. M., Rubinstein, I., Onyuksel, H., “Role of nanotechnology in targeted drug delivery and imaging: a concise review”, Nanomedicine: Nanotechnology, Biology, and Medicine, 1, 193-212, 2005
[62]Muller, R. H., Keck, C. M., “Challenges and solutions for the delivery of biotech drugs - a review of drug nanocrystal technology and lipid nanoparticles”, J. Biotechnol., 113, 51–170, 2004
[63] Andrä, W., Magnetism in Medicine: A Handbook, Andrä , W., Nowak, H., editors, Wiley-VCH, Berlin, p.455, 1998
[64]Mornet, S., Vasseur, S., Grasset, F., Duguet, E., “Magnetic nanoparticle design for medical diagnosis and therapy”, J. Mater. Chem., 14, 2161-2175, 2004
[65]Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J., “Applications of magnetic nanoparticles in biomedicine”, J. Phys. D: Appl. Phys., 36, R167–R181, 2003
[66]黃佳琪,“以磷脂質修飾之奈米磁性材料之製備與性質鑑定”, 國立成功大學化學工程系碩士論文,2006
[67]Nakaya, T., Li, Y. J., “Phospholipid polymers-review article”, Prog. Poly. Sci., 24, 143-181, 1999
[68]Nalwa, H.S., “Preparation of Vesicles (Liposomes)”, Encyclopedia of Nanoscience and Nanotechnology, 9, 43-79, 2004
[69]Woodle, M.C., Lasic, D.D., “Sterically stabilized liposomes”, Biochim. Biophys. Acta, 1113(2), 171-199, 1992
[70]Israelachvili, J.N., MacGuiggan, P.M., “Forces between Surfaces in Liquids Science”, 241, 795-800, 1988
[71]Jones, M. N., “The surface properties of phospholipid liposome systems and their characterization”, Adv. Colloid Interface Sci., 54(3), 93-128, 1995
[72]Ho, R., Yuan, J.-Y., Shao, Z., “Hydration Force in the Atomic Force Microscope: A Computational Study”, Biophys. J., 75, 1076–1083, 1998
[73]Helfrich, W., Naturforsch., Z., 33a, p.305, 1978
[74]de Gennes, P.G., “Polymers at an interface; a simplified view “, Adv. Colloid Interface Sci., 27, 189-209, 1987
[75]Šegota, S., Težak, Ð., “Spontaneous formation of vesicles”, Adv. Colloid Interface Sci., 27(3-4), 189-209, 1987
[76]李維鈞,”利用電噴霧製備磁性核殼複合奈米粒子及其在蛋白質分子模板上的應用”,國立成功大學化學工程系碩士論文,2007
[77]南台科技大學高職教師進修網站:鑄工科材料分析技術,http://elearning.stut.edu.tw/caster/3/no4/4-1.htm
[78]Legeros, R.Z., “Effect of carbonate on the lattice parameters of apatite”, Nature, 206, 403-405, 1965
[79]Stöber, W., Fink, A., Bohn, E., “Controlled growth of monodisperse silica spheres in the micron size range”, J. Colloid Interface Sci., 26, 62-69, 1968
[80]Calvo, P., Remunan-Lopez, C., Vila-Jato, J.L., Alonso, M.J., “Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers”, J. Appl. Pol. Sci. 63, 125–132, 1997
[81]Vila, A., S´anchez, A., Janes, K., Behrens, I., Kissel, T.,Vila Jato, J.L., Alonso, M.J., “Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice”, Eur. J. Pharm. 57, 123–131, 2004
[82]Babincová, M., Leszczynska, D., Sourivong, P., Čičmanec, P., Babinec, P., “Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia”, J. Magn. Magn. Mater., 225, 109-112, 2001
[83]Hergt, R., Dutz, S., “Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy”, J. Magn. Magn. Mater., 311, 187-192, 2007
[84]鄭景軒,”磁性奈米微粒之二氧化矽被覆技術之研究”,國立成功大學機械工程系碩士論文,2003.
[85]Schwertmann, Udo, Cornell, R. M., Scwertmann, U., “Iron oxides, structure, properties, reactions, occurrences and uses”, Vch Verlagsgesellschaft Mbh, 2003.
[86]Shen, L., Laibinis, P. E., Hatton, A., “Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces”, Langmuir, 15, 447-453, 1999
[87]Fu, L. Dravid, V. P., Johnson, D. L., “Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles”, Appl. Surf. Sci., 181, 173-178, 2001
[88]王炳傑、邱文英、李佳芬, “次微米級有機/無機複合乳膠顆粒之合成及性質(2/2)”, 計畫編號:NSC 91-2216-E-002-020, 2002
[89]Li, X., Lu, G., Li, S., “Synthesis and characterization of fine particle ZnFe204 powders by a low temperature method”, J. Alloy. Compd., 235, 150-155, 1996
[90]Josyulu, O.S., Sobhanadri, “The far-infrared spectra of some mixed cobalt zinc and magnesium zinc ferrites”, J. Phys. Stat. Solidi (a)., 65, 479-483, 1981
[91]Wanga, X., Gub, H., Yang, Z., “The heating effect of magnetic fluids in an alternating magnetic field”, J. Magn. Magn. Mater., 293, 334-340, 2005
[92]Lubeck, C. R., Chin, M.C., Doyle, F. M., “Functionalization of a synthetic polymer to create inorganic/polymer hybrid materials”, Functional Fillers and Nanoscale Minerals, Kellar, J.J., Herpfer, M.A., Moudgil, B.M., editors, SME, Littleton, CO, 95-104, 2003
[93]陳崇賢, “二性次微米聚合體粒子之合成與鑑定以及其和蛋白質的交互作用”, 工程科技通訊, 97, 2008
[94] Morrison, R. T., Boyd, R. N., ”Oragnic chemistry”, prentice-hall international, sixth edition, New Jersey, 924-925, 1992
[95]Park, Sung Kyoo, Kim, Ki Do, Kim, Hee Taik, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles”, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 197, 7–17,2002.
[96]Mornet, S., Lambert, O., Duguet, E., Brisson, A., “The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy”, Nano Letters, 5(2), 281-285, 2005
[97]Mori, H., Lanzendörfer, M. G., Müller, A. H. E., “Organic-inorganic nanoassembly based on complexation of cationic silica nanoparticles and weak anionic polyelectrolytes in aqueous and alcohol media”, Langmuir, 20, 1934-1944, 2004.
[98]Zheng, C., Lin, A., Zhen, X., Feng, M., Huang, J., Zhan, H., “Structural and textural evolution of dimethyl-modified silica xerogels”, Materials Letters, 61(14-15), 2927-2930, 2007