簡易檢索 / 詳目顯示

研究生: 張惇易
Chang, Tun-Yi
論文名稱: 可控制色彩之氮氧化鈦塗層
Color Controllable TiOxNy Coatings
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 反應式磁控濺鍍氮氧化鈦裝飾性薄膜CIE1976Lab
外文關鍵詞: reactive magnetron sputter, TiNxOy, decorative coating, CIE1976Lab
相關次數: 點閱:59下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要的目標為使用RF反應式磁控濺鍍法,製備一系列的TiNxOy薄膜,並觀察其於外觀顏色上的變化及作為裝飾性鍍膜的表現。本研究中使用單一金屬鈦靶材,通入的工作氣體及反應氣體分別為高純度之氬氣與氮氣,透過不同的製程參數我們可以得到元素組成比、厚度及折射率各不相同的TiNxOy膜層。
    本研究中所改變的薄膜製成參數有工作壓力、反應氣體流量、鍍膜時間及射頻功率,藉由這些參數的調整來改變薄膜化學成分及光學性質,再利用各項分析儀器分析並比較不同參數帶給薄膜的影響。
    藉由場發射掃描式顯微鏡(FE-SEM)SEM可觀察薄膜表面形貌,發現隨著氮氣流量的增加,薄膜顆粒的顆粒與顆粒間界線變得較為模糊,在濺鍍過程中,不同的氮氣流量影響靶材表面的毒化程度,不同的射頻功率則控制濺鍍粒子動能,隨著氮氣流量降低、射頻功率提升,其薄膜氮氧比皆有增加的趨勢。。由X射線繞射儀(XRD)則可以分析薄膜的結晶狀態,發現低高功率下之薄膜具有TiN(111)、(200)、(220)之繞射峰,且結晶程度較高。
    在1.7、3.3%等低N2偏壓的狀態下,靶材的表面較不易因毒化形成化合物從而降低鍍膜速率,增加鍍膜時的各項成本。不同沉積時間產生不同厚度下之薄膜顏色各不相同,與UV光譜比對吸收峰之結果後,可知因干涉效應薄膜隨著厚度增加而發生破壞性干涉的波長也越大。薄膜隨著功率增加或是氮氣流量下降,而有著從黃綠色往紅紫色移動的趨勢。

    In this study, we used RF reactive magnetron sputtering technique to produce a series of TiNxOy thin films. Observed the color change and evaluate the performance as decorative coatings. Pure metal titanium was selected as target material, working gas and reactive gas was argon and nitrogen respectively. By using different parameters, we can obtained TiNxOy thin films with different composition, thickness and reflective index.
    In the study, the parameters we controlled were working pressure, reactive gas flow rate, deposition time and sputtering power. The chemical composition and optical properties can be changed by controlling these parameters. Use different instruments to analyze the how these parameters affect films. Surface topography of thin films can be observed by FE-SEM. As nitrogen flow rate increase, TiNxOy particles and the boundaries become more unclear. The degree of target poisoning was affected by nitrogen flow rate, and kinetic energy of particles was controlled by power. As N2 flow rate decrease and power increase, the N/O ratio of thin films increase. Crystal structure can be learned from XRD patterns. In the results, we found that thin films contain TiN diffraction peaks (111),(200)and(220), and crystallinity is higher.
    Low N2 flow rate (0.5,1 sccm) can prevent the surface of target from poisoning. The cost of sputtering can be lower down as the deposition rate is higher. The color of thin films were different due to different thickness resulted from different deposition time. Compare the results with UV spectrum peaks, the effect of destructive interference was revealed. As the thickness increases, the wavelength where destructive interference occurs increases. As power increase or N2 flow rate decrease, there was a trend of thin films color from yellow-green to red-purple.

    摘要 II Extend abstract III 誌謝 IV 總目錄 V 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第2章 理論基礎與文獻回顧 3 2.1 材料光學性質 3 2.1.1 光與介質的交互作用 3 2.1.2 薄膜光學常數 9 2.2 色彩空間 10 2.2.1 色彩空間簡介 10 2.2.2 RGB色彩空間 11 2.2.3 CIEXYZ色彩空間 11 2.2.4 CIEL*a*b*色彩空間 13 2.3 裝飾性薄膜 14 2.3.1 製備方法 14 2.3.2 彩色裝飾性鍍膜之材料 15 2.3.3 TiNxOy於彩色裝飾性鍍膜之應用 16 2.4 材料基本性質之文獻回顧 18 2.4.1 TiN 18 2.4.2 TiO2 19 2.4.3 TiNxOy、N-doped TiO2 20 2.5 反應式磁控濺鍍 21 2.5.1 電漿理論 22 2.5.2 濺射機制 22 2.5.3 薄膜沉積機制 25 第3章 儀器設備與實驗方法 28 3.1 實驗材料與設備 28 3.1.1 實驗耗材 28 3.1.2 RF磁控濺鍍系統 29 3.2 實驗流程 30 3.2.1 基板裁切與清洗 30 3.2.2 濺鍍之步驟流程 31 3.3 材料分析 32 3.3.1 X光光電子能譜儀(XPS) 32 3.3.2 X光薄膜繞射儀(Thin film XRD) 34 3.3.3 場發射掃描式電子顯微鏡(FE-SEM) 35 3.3.4 UV-vis-NIR分光光譜儀(Spectrometer) 37 3.3.5 橢圓偏光儀(Ellipsometer) 38 3.3.6 色度計(Colorimeter) 39 3.3.7 百格測式(Cross-cut tape test) 40 第4章 結果與討論 42 4.1 TiNxOy單層選擇性吸收塗層特性分析 42 4.1.1 表面形貌與薄膜微結構 43 4.1.2 結晶結構 45 4.1.3 厚度與折射率分析 48 4.1.4 顏色光學性質 50 4.1.5 化學成分與鍵結組成 55 4.1.6 附著力測試 60 第5章 結論與展望 63 參考文獻 64

    參考文獻
    [1] A. Piegari and F. François, "Optical Thin Films and Coatings," 2013. Woodhead Publishing Limited
    [2] E. Ariza et al., "Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering," Thin Solid Films, vol. 469-470, pp. 274-281, 2004.
    [3] C. I. da Silva Oliveira et al., "Zr-O-N coatings for decorative purposes: Study of the system stability by exploration of the deposition parameter space," Surface and Coatings Technology, vol. 343, pp. 30-37, 2018/06/15/ 2018.
    [4] 吳國瑞, "油漆作業勞工有機溶劑暴露之研究," 碩士, 公共衛生研究所, 國立臺灣大學, 台北市, 1992.
    [5] F. C. Walsh and C. T. J. Low, "A review of developments in the electrodeposition of tin-copper alloys," Surface and Coatings Technology, vol. 304, pp. 246-262, 2016.
    [6] 卓建安, "應用電透析技術處理電鍍業廢水之效益評估," 碩士, 環境工程研究所, 弘光科技大學, 台中市, 2017.
    [7] W. Yang, D. Xu, X. Yao, J. Wang, and J. Chen, "Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy," Journal of Alloys and Compounds, vol. 745, pp. 609-616, 2018.
    [8] M. Fox, "Optical Propertes of Solids," 2001.
    [9] David Halliday, Robert Resnick, and J. Walker, Fundamentals of Physics Extended. 2010.
    [10] S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, "Anti-reflecting and photonic nanostructures," Materials Science and Engineering: R: Reports, vol. 69, no. 1-3, pp. 1-35, 2010.
    [11] 那. 史月艳, "《太阳光谱选择性吸收膜系设计、制备及测评》," 清华大学, 2009.
    [12] Kuldip Acharya and D. Ghoshal, "Detection of A Shadow of Animated Video Frames in RGB Color
    Space," Procedia Computer Science, vol. 132, pp. 103-108, 2018.
    [13] c. poynton, "25 - The CIE system of colorimetry," in Digital Video and HD (Second Edition), C. Poynton, Ed. Boston: Morgan Kaufmann, 2012, pp. 265-286.
    [14] R. E. Larraín, D. M. Schaefer, and J. D. Reed, "Use of digital images to estimate CIE color coordinates of beef," Food Research International, vol. 41, no. 4, pp. 380-385, 2008.
    [15] K. Marušić, I. Pucić, and V. Desnica, "Ornaments in radiation treatment of cultural heritage: Color and UV–vis spectral changes in irradiated nacres," Radiation Physics and Chemistry, vol. 124, pp. 62-67, 2016.
    [16] F. Černý, V. Jech, I. Štěpánek, A. Macková, and S. Konvičková, "Decorative a-C:H coatings," Applied Surface Science, vol. 256, no. 3, pp. S77-S81, 2009.
    [17] F. Maury and F. D. Duminica, "TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition," Surface and Coatings Technology, vol. 205, no. 5, pp. 1287-1293, 2010.
    [18] E. Budke, J. Krempel-Hesse, H. Maidhof, and H. S. ssler, "Decorative hard coatings with improved corrosion resistance," Surface and Coatings Technology, vol. 112, no. 1-3, pp. 108-113, 1999.
    [19] P. Klumdoung, A. Buranawong, S. Chaiyakun, and P. Limsuwan, "Variation of color in Zirconium nitride thin films prepared at high Ar flow rates with reactive dc magnetron sputtering," Procedia Engineering, vol. 32, pp. 916-921, 2012.
    [20] F. Vaz et al., "Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage," Thin Solid Films, vol. 469-470, pp. 11-17, 2004/12/22/ 2004.
    [21] A. Fuertes, "Synthetic approaches in oxynitride chemistry," Progress in Solid State Chemistry, 2017/11/03/ 2017.
    [22] G. Wang et al., "Origin of enhanced catalytic activity of oxygen reduction reaction on zirconium oxynitrides: A first-principle study," Solid State Ionics, vol. 317, pp. 15-20, 2018/04/01/ 2018.
    [23] F. Vaz et al., "Structural, optical and mechanical properties of coloured TiNxOy thin films," Thin Solid Films, vol. 447-448, pp. 449-454, 2004.
    [24] ZHAO Bao-xing, ZHOU Ji-cheng, and R. Lin-yan, "Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates," Transactions of Nonferrous Metals Society of China, vol. 20, pp. 1429-1433, 2010.
    [25] R. Yang, J. Liu, L. Lin, Y. Qu, W. Zheng, and F. Lai, "Optical properties and thermal stability of colored solar selective absorbing coatings with double-layer antireflection coatings," Solar Energy, vol. 125, pp. 453-459, 2016.
    [26] Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and A. Boltasseva*, "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths," OPTICAL MATERIALS EXPRESS, vol. 2, pp. 478-489, 2012.
    [27] 楊浚揮, "以物理氣相沉積法通入空氣/氬氣製備TiN薄膜," 國立中山大學, 2007.
    [28] P. Patsalas and S. Logothetidis, "Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films," Journal of Applied Physics, vol. 90, no. 9, pp. 4725-4734, 2001.
    [29] L. E. Toth, "Transition Metal Carbides and Nitrides," Academic Press, 1971.
    [30] A. V. Emeline, V. N. Kuznetsov, V. K. Rybchuk, and N. Serpone, "Visible-Light-Active Titania Photocatalysts: The Case of N-DopedTiO2s—Properties and Some Fundamental Issues," International Journal of Photoenergy, vol. 2008, pp. 1-19, 2008.
    [31] 周灵平报,, 罗小兰,, 朱家俊,, 彭. 坤,, 李德意,, and 李绍禄, "TiO2薄膜折射率的调控方法," Journal of Hunan University(Natural Sciences), vol. 38, 2011.
    [32] 詹慕萱, "濺鍍法中以空氣作為反應性氣體製備氮化鈦、氮氧化鈦與氮摻雜二氧化鈦薄膜及其特性研究," 國立中興大學, 2010.
    [33] P. G. Wu, C. H. Ma, and J. K. Shang, "Effects of nitrogen doping on optical properties of TiO2 thin films," Applied Physics A, vol. 81, no. 7, pp. 1411-1417, 2005.
    [34] S. H. Mohamed et al., "Influence of nitrogen content on properties of direct current sputtered TiOxNy films," physica status solidi (a), vol. 201, no. 1, pp. 90-102, 2004.
    [35] J. Zhang, T. P. Chen, X. D. Li, Y. C. Liu, Y. Liu, and H. Y. Yang, "Investigation of localized surface plasmon resonance of TiN nanoparticles in TiN_xO_y thin films," Optical Materials Express, vol. 6, no. 7, p. 2422, 2016.
    [36] J. Zhang, T. P. Chen, Y. C. Liu, Z. Liu, and H. Y. Yang, "Modeling of a selective solar absorber thin film structure based on double TiNxOy layers for concentrated solar power applications," Solar Energy, vol. 142, pp. 33-38, 2017.
    [37] J. Zhang, T. P. Chen, Y. C. Liu, Z. Liu, and H. Y. Yang, "Design of a High Performance Selective Solar Absorber with the Structure of SiO2-TiO2-TiNxOy-Cu," ECS Journal of Solid State Science and Technology, vol. 5, pp. 43-47, 2016.
    [38] 楊偉仁, "以直流磁控及高功率脈衝磁控濺鍍之TiO2光觸媒薄膜的特性分析比較," 國立交通大學, 2013.
    [39] 李卓諺, "以反應式磁控濺鍍法製備TiNxOy多層膜於太陽能選擇性吸收塗層之應用," 國立成功大學, 2017.
    [40] B. W. a. N. Savvides, "Charged particle fluxes from planar magnetron sputtering sources," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 4, 1986.
    [41] 赵嘉学, "等离子体发射监控系统参与的中频孪生反应磁控溅射沉积TiO2薄膜的实验研究(1)," 真空技术网.
    [42] B. Chapman, "Glow Discharge Processes: Sputtering and Plasma Etching," John Wiley, 1980.
    [43] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666-670, 1974.
    [44] 藍詠翔, "瓷金結構a-C:H/Pt用於選擇性太陽吸收膜之研究," 國立成功大學, 2009.
    [45] 田大昌 and 黃啟貞, "場發射式歐傑電子顯微鏡(AES)/微區表面化學電子能譜儀(ESCA)之簡介," 工業材料雜誌 pp. 81-89, 2003.
    [46] 楊慧德, "物理冶金學(含材料科學)-八版-," 鼎茂圖書出版股份有限公司, 2012.
    [47] 林麗娟, "X光繞射原理及其應用," 工業材料86期, pp. 100-109, 1994.
    [48] 羅聖全, "科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM)," 科學研習, 2013.
    [49] "http://www.tohokaken-cat.jp/analysis.html."
    [50] A. Rothen, "The ellipsometry, an apparatus to measure thickness of thin surface films," Review of Scientific Instruments, vol. 16, no. 2, pp. 26-30, 1945.
    [51] S. S.So, "Ellipsometric analyses for an absorbing surface film on an absorbing substrate with or without an intermediate surface layer," Surface Science, vol. 56, pp. 97-108, 1976.
    [52] S. Pourfalah, D. M. Cotsovos, B. Suryanto, and M. Moatamedi, "Out-of-plane behaviour of masonry specimens strengthened with ECC under impact loading," Engineering Structures, vol. 173, pp. 1002-1018, 2018.
    [53] Y. Cui, K. Yi, H. Guohang, and J. Shao, "Interface characteristics of peeling-off damages of laser coatings," Applied Surface Science, vol. 290, pp. 71-79, 2014.
    [54] I. Campos-Silva et al., "Effects of scratch tests on the adhesive and cohesive properties of borided Inconel 718 superalloy," Surface and Coatings Technology, vol. 349, pp. 917-927, 2018.
    [55] Y. Wang et al., "A facile process to manufacture high performance copper layer on ceramic material via biomimetic modification and electroless plating," Composites Part B: Engineering, 2018.
    [56] T. Li and J. He, "Mechanically robust, humidity-resistant, thermally stable high performance antireflective thin films with reinforcing silicon phosphate centers," Solar Energy Materials and Solar Cells, vol. 170, pp. 95-101, 2017.
    [57] L. Z. Z. A. S. L. JOSHUA PELLEG, "REACTIVE-SPUTTER-DEPOSITED TIN FILMS ON GLASS SUBSTRATES," Thin Solid Films, vol. 197, pp. 117-128, 1991.
    [58] "https://srdata.nist.gov/xps/selEnergyType.aspx."
    [59] A. Trenczek-Zajac et al., "Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen," Journal of Power Sources, vol. 194, no. 1, pp. 93-103, 2009.
    [60] Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, "Properties of titanium nitride films prepared by direct current magnetron sputtering," Materials Science and Engineering: A, vol. 445-446, pp. 223-236, 2007.
    [61] I. M. Ismail, B. Abdallah, M. Abou-Kharroub, and O. Mrad, "XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 271, pp. 102-106, 2012.
    [62] 許瓊文, "碳氮共摻雜之次微米球珠特性以及其在可橈式染料敏化太陽能電池之應用," 國立成功大學, 2012.

    下載圖示 校內:2023-09-07公開
    校外:2023-09-07公開
    QR CODE