| 研究生: |
黃偉輔 Huang, Wei-Fu |
|---|---|
| 論文名稱: |
鄉村社區高血糖和血糖正常的老人之肌少症的盛行率和臨床結果:
2012年田寮老人研究與2012-2021年台灣健保資料庫 Prevalence and clinical outcomes of sarcopenia and severe sarcopenia in hyperglycemia and normoglycemic elder people in rural community: The Tianliao Old People study (TOP 2012) and The Taiwan National Health Insurance Research Database (NHIRD 2012-2021) |
| 指導教授: |
吳至行
Wu, Chih-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 老年學研究所 Institute of Gerontology |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 骨骼肌質量 、糖尿病 、生物電阻抗分析 、營養狀況 、老年人 |
| 外文關鍵詞: | Skeletal muscle mass, Diabetes, Bioelectrical impedance analysis, Nutritional status, Old people |
| ORCID: | 0009-0008-5161-3743 |
| 相關次數: | 點閱:38 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景
第二型糖尿病的特徵是胰島素阻抗、慢性發炎、晚期糖基化終端產物累積與氧化壓力增加,這些特徵對於骨骼肌肉的健康都是負向的。肌少症被定義為與年齡相關的骨骼肌質量,力量與身體功能的衰退。骨骼肌是人體中最大的胰島素敏感組織,肌少症中的低肌肉質量可能減少葡萄糖處理能力。因此,糖尿病與肌少症呈現雙向關係,值得探討。老年人的骨骼肌與代謝疾病盛行率逐年增加。肌少症已被證明與功能衰退、失能,和死亡率有關。而且第二型糖尿病造成的併發症,如大小血管病變,神經病變,慢性腎衰竭與視網膜病變,也與老年人的失能與死亡率相關。有無糖尿病或肌少症者之長期追蹤臨床結果也值得探索。
研究動機
目前台灣少有鄉村社區老年人糖尿病與肌少症(含嚴重肌少症)盛行率的相關研究,更罕有糖尿病與肌少症後續造成老年人失能與死亡的長期追蹤結果。
研究目的
評估南臺灣鄉村社區的老年人有無糖尿病合併肌少症的相關盛行率與危險因子。
研究對象
本研究使用2012年南台灣田寮區以全社區抽樣方法,最終選取完成檢查之285名65歲以上的男性和264名女性(整體回覆率為50%)。
研究方法
利用生物電阻抗分析測量身體組成,骨骼肌質量則通過楊森方程式估計。透過標準流程收集個案之小腿圍、握力、5次椅子站坐測試、步行速度和簡易身體功能評估等數據並以剩餘檢體進行生化血液檢查獲得肌少症相關生物標記。糖尿病被定義為滿足以下,其中一個條件(1)空腹血糖(AC) >= 126 mg/dl或(2)糖化血色素(HbA1C) >= 6.5%或(3)自述病史患有糖尿病者。肌少症定義依據2019年亞洲肌少症工作組(AWGS)更新共識,共分為4組,包含無糖尿病無肌少症、無糖尿病有肌少症、有糖尿病無肌少症及有糖尿病有肌少症。
研究結果
在549名研究參與者中,69名(12.6%)被歸類為患有肌少症,其中11名患有糖尿病,58名沒有糖尿病。比較老年非糖尿病組 (58/420 = 13.8%) 與糖尿病組 (11/129 = 8.5%),肌少症的盛行率,兩者不具統計學上的差異。多重邏輯迴歸模型顯示,肌少症與年齡(勝算比 [OR] 1.14,95% 信賴區間 [CI] 1.05-1.22)、體脂百分比(OR 1.60,95% CI 1.34-1.91)、身體質量指數(OR 0.25,95% CI 0.16-0.38)和迷你營養評估評分(<24)(OR 2.73,95% CI 1.07-7.00)有明顯相關。而且,血糖控制不佳,罹患肌少症的風險有所增加的趨勢(Reference:HbA1C < 5.7%, ≥5.7%- <7% OR 1.37,≥7%- <9% OR 2.29,≥9% OR 1.82)。然而,肌少症相關生物標記,如:肌肉生長抑制素蛋白和鳶尾素在肌少症和非肌少症之間以及糖尿病和非糖尿病之間無顯著差異。
結論
南臺灣鄉村社區老年人約十分之一,無論是否患有糖尿病,都面臨著肌少症的威脅。反觀,充足的營養和有效的血糖控制有可能成為降低老年人肌少症風險的關鍵因素。這些發現對老年健康管理和預防策略具有影響,特別是在鄉村地區。儘管肌肉相關的生物指標,在本研究未能發現有明確預測肌少症的差異,仍須未來進一步的研究以確認其價值。
Whether the diabetes mellitus (DM) is associated with the risk of sarcopenia is an emerging issue. This study examines the prevalence and associated risk factors of sarcopenia in elderly individuals with and without diabetes living in a rural community, addressing a critical gap in geriatric health studies. Through the comprehensive whole-community sampling methods, a total of 549 participants (285 ♂, 264 ♀) aged over 65 were randomly selected and thoroughly examined (response rate = 50%) in 2012 from the Tianliao District, southern Taiwan. The study utilized cross-sectional data, including detailed health questionnaires, anthropometric assessments, and biochemical tests. Sarcopenia and severe sarcopenia were defined according to the 2019 update consensus of the Asia Working Group for Sarcopenia (AWGS). Participants were categorized into the DM group based on either medical history, blood HbA1c levels (≥6.5%), or fasting glucose (≥126 mg/dl), while others as the non-DM group. Of the 549 study participants, 69 (12.6%) were classified as having sarcopenia, including 11 with diabetes and 58 without diabetes. The prevalence of sarcopenia was comparable in the elderly non-diabetic population (58/420 = 13.8%) compared to the diabetic group (11/129 = 8.5%). Multiple logistic regression models indicated a clear association of sarcopenia with Age, Body fat percentage, Body Mass Index, and Mini Nutritional Assessment score. There is a trend of sarcopenia along with the poor glycemic control. Sarcopenia-related biomarkers as Myostatin protein and Irisin had no apparent significant difference between sarcopenia and non-sarcopenia neither between diabetes nor non-diabetes. Adequate nutrition and effective glycemic control emerged as crucial factors in reducing the risk of sarcopenia in the elderly.
1.Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, van Kan GA, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Guibert FK, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. Journal of the American Medical Directors Association. 2011;12(4):249-256.
2.Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636-2646.
3.Takahashi F, Hashimoto Y, Kaji A, Sakai R, Okamura T, Kitagawa N, Okada H, Nakanishi N, Majima S, Senmaru T, Ushigome E, Hamaguchi M, Asano M, Yamazaki M, Fukui M. Sarcopenia Is Associated With a Risk of Mortality in People With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne). 2021;12:783363.
4.Tapper EB, Zhang P, Garg R, Nault T, Leary K, Krishnamurthy V, Su GL. Body composition predicts mortality and decompensation in compensated cirrhosis patients: A prospective cohort study. JHEP Rep. 2020;2(1):100061.
5.Cheng Q, Hu J, Yang P, Cao X, Deng X, Yang Q, Liu Z, Yang S, Goswami R, Wang Y, Luo T, Liao K, Li Q. Sarcopenia is independently associated with diabetic foot disease. Sci Rep. 2017;7(1):8372.
6.Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol. 2021;17(9):534-548.
7.Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80-85.
8.Taiwan DAotROC. DAROC Clinical Practice Guidelines for Type 2 Diabetes Care- 2022. 2022.
9.Eschwege E, Richard J, Thibult N, Ducimetiere P, Warnet J, Claude J, Rosselin G. Diabetes, hyperglycemia, hyperinsulinemia and risk of cardiovascular mortality. Findings of the Paris Prospective Survey, 10 years later. Revue D'epidemiologie et de Sante Publique. 1985;33(4-5):352-357.
10.Bell KE, Paris MT, Avrutin E, Mourtzakis M. Altered features of body composition in older adults with type 2 diabetes and prediabetes compared with matched controls. J Cachexia Sarcopenia Muscle. 2022;13(2):1087-1099.
11.Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057-1072.
12.. https://pop-proj.ndc.gov.tw/chart.aspx?c=10&uid=66&pid=60.
13.Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Newman AB. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813-1818.
14.Wang C-P, Hazuda HP. Better glycemic control is associated with maintenance of lower-extremity function over time in Mexican American and European American older adults with diabetes. Diabetes Care. 2011;34(2):268-273.
15.Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194-222.
16.Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes, metabolic syndrome and obesity: targets and therapy. 2019;12:1057.
17.Sugimoto K, Tabara Y, Ikegami H, Takata Y, Kamide K, Ikezoe T, Kiyoshige E, Makutani Y, Onuma H, Gondo Y. Hyperglycemia in non‐obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus. Journal of diabetes investigation. 2019;10(6):1471-1479.
18.Yoon JW, Ha Y-C, Kim KM, Moon JH, Choi SH, Lim S, Park YJ, Lim JY, Kim KW, Park KS. Hyperglycemia is associated with impaired muscle quality in older men with diabetes: the Korean Longitudinal Study on Health and Aging. Diabetes & metabolism journal. 2016;40(2):140-146.
19.Kalyani RR, Tian J, Xue QL, Walston J, Cappola AR, Fried LP, Brancati FL, Blaum CS. Hyperglycemia and incidence of frailty and lower extremity mobility limitations in older women. Journal of the American Geriatrics Society. 2012;60(9):1701-1707.
20.Yoshida D, Suzuki T, Shimada H, Park H, Makizako H, Doi T, Anan Y, Tsutsumimoto K, Uemura K, Ito T, Lee S. Using two different algorithms to determine the prevalence of sarcopenia. Geriatr Gerontol Int. 2014;14 Suppl 1:46-51.
21.Yoshimura N, Muraki S, Oka H, Iidaka T, Kodama R, Kawaguchi H, Nakamura K, Tanaka S, Akune T. Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys. Osteoporos Int. 2017;28(1):189-199.
22.Arango-Lopera VE, Arroyo P, Gutiérrez-Robledo LM, Pérez-Zepeda MU, Cesari M. Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging. 2013;17(3):259-262.
23.Chiba Y, Kimbara Y, Kodera R, Tsuboi Y, Sato K, Tamura Y, Mori S, Ito H, Araki A. Risk factors associated with falls in elderly patients with type 2 diabetes. J Diabetes Complications. 2015;29(7):898-902.
24.Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31.
25.Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300-307.e302.
26.Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance for body composition. Exerc Sport Sci Rev. 1990;18:193-224.
27.Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol (1985). 2000;89(2):465-471.
28.Chang CS, Liu IT, Liang FW, Li CC, Sun ZJ, Chang YF, Chao TH, Wu CH. Effects of age and gender on body composition indices as predictors of mortality in middle-aged and old people. Sci Rep. 2022;12(1):7912.
29.Matsuura S, Shibazaki K, Uchida R, Imai Y, Mukoyama T, Shibata S, Morita H. Sarcopenia is associated with the Geriatric Nutritional Risk Index in elderly patients with poorly controlled type 2 diabetes mellitus. J Diabetes Investig. 2022;13(8):1366-1373.
30.Liguori I, Curcio F, Russo G, Cellurale M, Aran L, Bulli G, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Risk of Malnutrition Evaluated by Mini Nutritional Assessment and Sarcopenia in Noninstitutionalized Elderly People. Nutr Clin Pract. 2018;33(6):879-886.
31.Feng L, Gao Q, Hu K, Wu M, Wang Z, Chen F, Mei F, Zhao L, Ma B. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1470-1483.
32.Qiao YS, Chai YH, Gong HJ, Zhuldyz Z, Stehouwer CDA, Zhou JB, Simo R. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391.
33.Perakakis N, Triantafyllou GA, Fernandez-Real JM, Huh JY, Park KH, Seufert J, Mantzoros CS. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324-337.
34.Crujeiras AB, Zulet MA, Lopez-Legarrea P, de la Iglesia R, Pardo M, Carreira MC, Martínez JA, Casanueva FF. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism. 2014;63(4):520-531.
35.Lopez-Legarrea P, de la Iglesia R, Crujeiras AB, Pardo M, Casanueva FF, Zulet MA, Martinez JA. Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects. Nutr Diabetes. 2014;4(2):e110.
36.Crujeiras AB, Pardo M, Arturo RR, Navas-Carretero S, Zulet MA, Martínez JA, Casanueva FF. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol. 2014;26(2):198-207.
37.Lu C, Li Z, Yang J, Feng L, Wang C, Shi Q. Variations in Irisin, Bone Mineral Density, Bone Mineral Content, and Body Composition After Laparoscopic Bariatric Procedures in Obese Adults. J Clin Densitom. 2020;23(2):244-253.
38.Lagzdina R, Rumaka M, Gersone G, Tretjakovs P. Circulating Irisin in Healthy Adults: Changes after Acute Exercise, Correlation with Body Composition, and Energy Expenditure Parameters in Cross-Sectional Study. Medicina (Kaunas). 2020;56(6).
39.Fossati C, Papalia R, Torre G, Vadala G, Borrione P, Grazioli E, Mazzola C, Parisi A, Pigozzi F, Denaro V. Frailty of the elderly in orthopaedic surgery and body composition changes: The musculoskeletal crosstalk through irisin. J Biol Regul Homeost Agents. 2020;34:327-335.
40.Kira S, Ito C, Fujikawa R, Misumi M. Increased cancer mortality among Japanese individuals with hyperinsulinemia. Metabol Open. 2020;7:100048.
41.Shen S, Gao R, Bei Y, Li J, Zhang H, Zhou Y, Yao W, Xu D, Zhou F, Jin M, Wei S, Wang K, Xu X, Li Y, Xiao J, Li X. Serum Irisin Predicts Mortality Risk in Acute Heart Failure Patients. Cell Physiol Biochem. 2017;42(2):615-622.
42.Oguz A, Sahin M, Tuzun D, Kurutas EB, Ulgen C, Bozkus O, Gul K. Irisin is a predictor of sarcopenic obesity in type 2 diabetes mellitus: A cross-sectional study. Medicine (Baltimore). 2021;100(26):e26529.
43.Choi HY, Kim S, Park JW, Lee NS, Hwang SY, Huh JY, Hong HC, Yoo HJ, Baik SH, Youn BS, Mantzoros CS, Choi KM. Implication of circulating irisin levels with brown adipose tissue and sarcopenia in humans. J Clin Endocrinol Metab. 2014;99(8):2778-2785.
44.Chang JS, Kim TH, Nguyen TT, Park KS, Kim N, Kong ID. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr Gerontol Int. 2017;17(11):2266-2273.
45.Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379-1406.
46.Barbalho SM, Flato UAP, Tofano RJ, Goulart RA, Guiguer EL, Detregiachi CRP, Buchaim DV, Araújo AC, Buchaim RL, Reina FTR, Biteli P, Reina D, Bechara MD. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci. 2020;21(10).
47.Ryan AS, Li G. Skeletal muscle myostatin gene expression and sarcopenia in overweight and obese middle-aged and older adults. JCSM Clin Rep. 2021;6(4):137-142.
48.de Sire A, Baricich A, Renò F, Cisari C, Fusco N, Invernizzi M. Myostatin as a potential biomarker to monitor sarcopenia in hip fracture patients undergoing a multidisciplinary rehabilitation and nutritional treatment: a preliminary study. Aging Clin Exp Res. 2020;32(5):959-962.
49.Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296(6):C1258-1270.
50.Kwiatkowski D, Mehl R, Izumo S, Nadal-Ginard B, Yin H. Muscle is the major source of plasma gelsolin. Journal of Biological Chemistry. 1988;263(17):8239-8243.
51.Li GH, Arora PD, Chen Y, McCulloch CA, Liu P. Multifunctional roles of gelsolin in health and diseases. Medicinal research reviews. 2012;32(5):999-1025.
52.Strandberg TE, Levinson SL, DiNubile MJ, Jyväkorpi S, Kivimäki M. Association of plasma gelsolin with frailty phenotype and mortality among octogenarian community-dwelling men: a cohort study. Aging Clin Exp Res. 2022;34(5):1095-1101.
53.Wu CH, Chen KT, Hou MT, Chang YF, Chang CS, Liu PY, Wu SJ, Chiu CJ, Jou IM, Chen CY. Prevalence and associated factors of sarcopenia and severe sarcopenia in older Taiwanese living in rural community: the Tianliao Old People study 04. Geriatr Gerontol Int. 2014;14 Suppl 1:69-75.
54.Severinsen MCK, Pedersen BK. Muscle–organ crosstalk: the emerging roles of myokines. Endocrine reviews. 2020;41(4):594-609.
55.Maak S, Norheim F, Drevon CA, Erickson HP. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocrine Reviews. 2021;42(4):436-456.
56.Choudhuri S, Bhavnani SK, Zhang W, Botelli V, Barrientos N, Iñiguez F, Zago MP, Garg NJ. Prognostic Performance of Peripheral Blood Biomarkers in Identifying Seropositive Individuals at Risk of Developing Clinically Symptomatic Chagas Cardiomyopathy. Microbiol Spectr. 2021;9(1):e0036421.
57.Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, Casanova A, Swaminathan S, Anjana RM, Kumar R, Rosengren A, Wei L, Yang W, Chuangshi W, Huaxing L, Nair S, Diaz R, Swidon H, Gupta R, Mohammadifard N, Lopez-Jaramillo P, Oguz A, Zatonska K, Seron P, Avezum A, Poirier P, Teo K, Yusuf S. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390(10113):2643-2654.
58.Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Grp European Working G, Extended Grp E. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing. 2019;48(1):16-31.
59.Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang TM, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association. 2020;21(3):300-+.
60.Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, Celis-Morales C. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86-99.
61.Sugimoto K, Tabara Y, Ikegami H, Takata Y, Kamide K, Ikezoe T, Kiyoshige E, Makutani Y, Onuma H, Gondo Y, Ikebe K, Ichihashi N, Tsuboyama T, Matsuda F, Kohara K, Kabayama M, Fukuda M, Katsuya T, Osawa H, Hiromine Y, Rakugi H. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus. J Diabetes Investig. 2019;10(6):1471-1479.
62.Ko Y-C, Chie W-C, Wu T-Y, Ho C-Y, Yu W-R. A cross-sectional study about the relationship between physical activity and sarcopenia in Taiwanese older adults. Scientific Reports. 2021;11(1):11488.
63.Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, Hoskin M, Kriska AM, Mayer-Davis EJ, Pi-Sunyer X, Regensteiner J, Venditti B, Wylie-Rosett J. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29(9):2102-2107.
64.White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology. 2014;60(4):289-293.
65.Lee SJ, Lehar A, Meir JU, Koch C, Morgan A, Warren LE, Rydzik R, Youngstrom DW, Chandok H, George J, Gogain J, Michaud M, Stoklasek TA, Liu Y, Germain-Lee EL. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proc Natl Acad Sci U S A. 2020;117(38):23942-23951.
66.Lim LL, Chow E, Chan JCN. Cardiorenal diseases in type 2 diabetes mellitus: clinical trials and real-world practice. Nat Rev Endocrinol. 2023;19(3):151-163.
67.Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 2004;57(12):1288-1294.
68.Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G. Frailty in older adults: evidence for a phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2001;56(3):M146-M157.