| 研究生: |
陳志峰 Chen, Chih-Feng |
|---|---|
| 論文名稱: |
熱休克蛋白90抑制劑誘導未表現c-Kit蛋白之胃腸道基質瘤細胞凋亡機轉之探討 Investigating the mechanisms of HSP-90 inhibitor-induced apoptosis of c-Kitnull GIST-62 cells |
| 指導教授: |
陳立宗
Chen, Li-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | AUY-922 、細胞凋亡 、胃腸道基質瘤 、肝醣合成酶激酶 3 、熱休克蛋白90抑制劑 |
| 外文關鍵詞: | AUY-922, apoptosis, GIST, GSK-3, HSP-90 inhibitor |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胃腸道基質瘤屬於間質腫瘤,也是常見的胃腸道間質腫瘤。其發生率每年估計為每百萬人有10~20人,而惡性率為20~30%。70~80%的病患有原發性獲得功能的c-Kit突變,這些獲得功能的c-Kit突變會使得酪氨酸持續磷酸化,進而啟動下游與腫瘤生成相關的訊息傳遞路徑。臨床上,Imatinib mesylate(IM)為酪胺酸激酶抑制劑亦是胃腸道基質瘤的第一線藥物,然而大約50%的病患在使用IM治療兩年後會產生抗藥性。另外有15%的病患從原本有表達c-Kit轉變為沒有表達c-Kit,這些病患對於IM也出現抗藥性,因此研發針對胃腸道基質瘤以及具IM抗性的胃腸道基質瘤的化療藥物是非常重要的。熱休克蛋白90富含於大部分的組織中,功能是使其受質蛋白組合成正確結構、穩定並使之活化。超過兩百個受質蛋白與癌細胞存活及其進展是有相關的,故熱休克蛋白90可做為治療癌症的目標蛋白。在此研究中,不同的熱休克蛋白90抑制劑被使用做為探討熱休克蛋白90抑制劑促進胃腸道基質瘤細胞死亡的工具,由細胞存活試驗結果得知第四代熱休克蛋白90抑制劑AUY-922比第一代熱休克蛋白抑制劑17-AAG和第三代熱休克蛋白90抑制劑BIIB021更有效抑制胃腸道基質瘤細胞生長。在分子層面上,利用西方點墨法觀察到Akt表現減少和熱休克蛋白70增加,證實這些熱休克蛋白90抑制劑在未表達c-Kit的胃腸道基質瘤細胞AUY-922、17-AAG和BIIB021具有抑制熱休克蛋白90的功能,也觀察到這些熱休克蛋白抑制劑會造成細胞凋亡。特別的是使用磷酸蛋白陣列以及使用西方點墨法確認證實AUY-922在胃腸道基質瘤細胞62細胞株明顯抑制磷酸化肝醣合成酶激酶 3,這是之前文獻沒有發現到的。另外,發現使用siRNA抑制肝醣合成酶激酶 3α或3β會造成腸道基質瘤細胞死亡。我們的結果顯示熱休克蛋白90抑制劑並不會影響肝醣合成酶激酶 3蛋白的半衰期,但是卻會降低其訊息核糖核酸的數量。總結來說,調降肝醣合成酶激酶 3的表達在熱休克蛋白90抑制劑造成未表達c-Kit的腸道基質瘤細胞死亡中至少扮演一定的角色,也證實熱休克蛋白90抑制劑調降酶激酶 3蛋白表達是透過轉錄層面的調控,而非後轉錄層面的調控。
Gastrointestinal stromal tumor (GIST) represents the most common type of mesenchymal neoplasms of the gastrointestinal (GI) tract. The annual incidence of GIST is approximately 10-20 per million peoples. Among them, 20-30% of the GIST patients are malignant, and 70-80% of the malignant cases have gain-of-function mutations in the c-Kit gene. These c-Kit mutants are involved in activation of multiple cell survival signaling pathways and highly associated with the cellular process of tumorigenesis in GIST. In the current clinical situation, Imatinib mesylate (IM), a tyrosine kinase inhibitor (TKI), is the only approved first-line anticancer drug for GIST patients. Unfortunately, about 50% of responding patients will eventually develop drug-resistance phenotypes within 2 years during the therapy. Furthermore, approximately 15% of the c-Kit-positive GIST patients, who lost their c-Kit expression in the IM therapy, are resistant to IM. Therefore, it is important to disclose alternative chemotherapeutic drugs that can be used to treat patients with GISTs and IM-resistant GISTs. Heat shock protein-90 (HSP-90) is highly abundant in most tissues and has main functions on correcting conformation, stabilization, and activation of its client proteins. More than 200 client proteins of HSP-90 have been found so far and are involved either in cancer cell survival or in tumor malignancy. Therefore, HSP-90 may be a potential therapeutic target of cancers, and possibly for GISTs. However, the underlying molecular mechanisms of action of HSP-90 inhibitors in GISTs are unclear. In this study, three HSP-90 inhibitors were used as tools to investigate the mechanisms underlying the cell death of GIST caused by the HSP-90-inhibitors. The results showed that AUY-922, the fourth generation of HSP-90 inhibitor, was much more potent in inhibiting GIST cell growth as compared to 17-AAG and BIIB021, as revealed by the cell viability assays. At the molecular level, Western blot analysis showed that targeting HSP-90 by AUY-922, 17-AAG and BIIB021 decreased AKT expression and increased HSP-70 expression, whose results are consistent with previous studies. Induction of cell apoptosis by targeting HSP-90 with these small molecule inhibitors was also observed in this study. Interestingly, results of the phospho-protein array and Western blotting revealed that AUY-922 induced GSK-3 down-regulation in GIST-62 cells in vitro, which has not been reported previously. In addition, down-regulation of either GSK-3α or -3β by siRNA could induce GIST-62cell death. The biological effect of AUY-922 in the cells was not contributed by shortening of the half-lives of the GSK-3α and - 3β protein. Indeed, it reduced the transcriptional activity of the GSK-3 gene. In conclusion, results of the current study indicate that down-regulation GSK-3 plays at least a partial role in the AUY-922-induced GISTs cell death via attenuation of GSK-3 expression at the transcriptional level rather than through a post-transcriptional control.
1. Goettsch WG, Bos SD, Breekveldt-Postma N, Casparie M, Herings RM, Hogendoorn PC. Incidence of gastrointestinal stromal tumours is underestimated: results of a nation-wide study. Eur J Cancer. 2005;41(18):2868-72.
2. Liegl-Atzwanger B, Fletcher JA, Fletcher CD. Gastrointestinal stromal tumors. Virchows Arch. 2010;456(2):111-27.
3. Garcia de Polavieja Carrasco M, de Juan Ferre A, Mayorga Fernandez M. Gastrointestinal stromal tumours at present: an approach to burning questions. Clin Transl Oncol. 2010;12(2):100-12.
4. Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cellular Signalling. 2009;21(12):1717-26.
5. Ali S. Role of c-kit/SCF in cause and treatment of gastrointestinal stromal tumors (GIST). Gene. 2007;401(1-2):38-45.
6. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344(14):1052-6.
7. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13(5):1367-73.
8. Pidhorecky I, Cheney RT, Kraybill WG, Gibbs JF. Gastrointestinal stromal tumors: current diagnosis, biologic behavior, and management. Ann Surg Oncol. 2000;7(9):705-12.
9. Roskoski R, Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun. 2007;356(2):323-8.
10. Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, Robbie G, et al. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res. 2002;8(10):3034-8.
11. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24(29):4764-74.
12. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26(54):7560-8.
13. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K, et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene. 2007;26(27):3909-19.
14. Prenen H, Guetens G, de Boeck G, Debiec-Rychter M, Manley P, Schoffski P, et al. Cellular uptake of the tyrosine kinase inhibitors imatinib and AMN107 in gastrointestinal stromal tumor cell lines. Pharmacology. 2006;77(1):11-6.
15. Chen LL, Trent JC, Wu EF, Fuller GN, Ramdas L, Zhang W, et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 2004;64(17):5913-9.
16. Wakai T, Kanda T, Hirota S, Ohashi A, Shirai Y, Hatakeyama K. Late resistance to imatinib therapy in a metastatic gastrointestinal stromal tumour is associated with a second KIT mutation. Br J Cancer. 2004;90(11):2059-61. PMCID: 2409485.
17. Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128(2):270-9.
18. Nishida T, Takahashi T, Miyazaki Y. Gastrointestinal stromal tumor: a bridge between bench and bedside. Gastric Cancer. 2009;12(4):175-88.
19. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329-38.
20. Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26(33):5352-9. PMCID: 2651076.
21. Bauer S, Yu LK, Demetri GD, Fletcher JA. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res. 2006;66(18):9153-61.
22. Welch WJ. The role of heat-shock proteins as molecular chaperones. Curr Opin Cell Biol. 1991;3(6):1033-8.
23. Xu W, Neckers L. Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res. 2007;13(6):1625-9.
24. Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, et al. 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem. 2008;51(2):196-218.
25. Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008;68(8):2850-60.
26. Li Y, Zhang T, Schwartz SJ, Sun D. New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat. 2009;12(1-2):17-27. PMCID: 2692088.
27. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107(2):519-27.
28. Kockeritz L, Doble B, Patel S, Woodgett JR. Glycogen synthase kinase-3--an overview of an over-achieving protein kinase. Curr Drug Targets. 2006;7(11):1377-88.
29. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9(8):2431-8. PMCID: 552268.
30. Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J. 1993;12(2):803-8. PMCID: 413270.
31. Sutherland C, Cohen P. The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett. 1994;338(1):37-42.
32. Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993;296 ( Pt 1):15-9. PMCID: 1137648.
33. Mukai F, Ishiguro K, Sano Y, Fujita SC. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3beta. J Neurochem. 2002;81(5):1073-83.
34. Leis H, Segrelles C, Ruiz S, Santos M, Paramio JM. Expression, localization, and activity of glycogen synthase kinase 3beta during mouse skin tumorigenesis. Mol Carcinog. 2002;35(4):180-5.
35. Ding Q, He X, Xia W, Hsu JM, Chen CT, Li LY, et al. Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3beta activity and associates with poor prognosis in human breast cancer. Cancer Res. 2007;67(10):4564-71.
36. Cao Q, Lu X, Feng YJ. Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res. 2006;16(7):671-7.
37. Rosano L, Spinella F, Di Castro V, Nicotra MR, Dedhar S, de Herreros AG, et al. Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res. 2005;65(24):11649-57.
38. Ohira T, Gemmill RM, Ferguson K, Kusy S, Roche J, Brambilla E, et al. WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci U S A. 2003;100(18):10429-34. PMCID: 193578.
39. Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, et al. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun. 2005;334(4):1365-73.
40. Jin ZH, Kurosu T, Yamaguchi M, Arai A, Miura O. Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the AKT/GSK3 pathway to inhibit apoptosis. Oncogene. 2005;24(12):1973-81.
41. Tan J, Geng L, Yazlovitskaya EM, Hallahan DE. Protein kinase B/AKT-dependent phosphorylation of glycogen synthase kinase-3beta in irradiated vascular endothelium. Cancer Res. 2006;66(4):2320-7.
42. Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J. Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J. 2004;18(10):1162-4.
43. Kim AJ, Shi Y, Austin RC, Werstuck GH. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci. 2005;118(Pt 1):89-99.
44. Srinivasan S, Ohsugi M, Liu Z, Fatrai S, Bernal-Mizrachi E, Permutt MA. Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/AKT and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes. 2005;54(4):968-75.
45. King TD, Jope RS. Inhibition of glycogen synthase kinase-3 protects cells from intrinsic but not extrinsic oxidative stress. Neuroreport. 2005;16(6):597-601.
46. Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS. Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem. 2003;278(49):48872-9. PMCID: 1361697.
47. Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA, et al. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 2004;24(44):9993-10002.
48. Hongisto V, Smeds N, Brecht S, Herdegen T, Courtney MJ, Coffey ET. Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol Cell Biol. 2003;23(17):6027-36. PMCID: 180950.
49. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 2006;21(6):749-60.
50. Hetman M, Hsuan SL, Habas A, Higgins MJ, Xia Z. ERK1/2 antagonizes glycogen synthase kinase-3beta-induced apoptosis in cortical neurons. J Biol Chem. 2002;277(51):49577-84.
51. Hall JL, Chatham JC, Eldar-Finkelman H, Gibbons GH. Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis. Role of GSK3beta. Diabetes. 2001;50(5):1171-9.
52. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406(6791):86-90.
53. Schwabe RF, Brenner DA. Role of glycogen synthase kinase-3 in TNF-alpha-induced NF-kappaB activation and apoptosis in hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2002;283(1):G204-11.
54. Liao X, Zhang L, Thrasher JB, Du J, Li B. Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol Cancer Ther. 2003;2(11):1215-22.
55. Song L, Zhou T, Jope RS. Lithium facilitates apoptotic signaling induced by activation of the Fas death domain-containing receptor. BMC Neurosci. 2004;5:20. PMCID: 420462.
56. Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364(9440):1127-34.
57. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472-80.
58. Bauer S, Hartmann JT, de Wit M, Lang H, Grabellus F, Antoch G, et al. Resection of residual disease in patients with metastatic gastrointestinal stromal tumors responding to treatment with imatinib. Int J Cancer. 2005;117(2):316-25.
59. Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20(36):5054-8.
60. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. AKT forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem. 2002;277(42):39858-66.
61. Kim HR, Kang HS, Kim HD. Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life. 1999;48(4):429-33.
62. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N. Inhibition of heat shock protein 90 function down-regulates AKT kinase and sensitizes tumors to Taxol. Cancer Res. 2003;63(9):2139-44.
63. Munster PN, Marchion DC, Basso AD, Rosen N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3'-kinase-AKT-dependent pathway. Cancer Res. 2002;62(11):3132-7.
64. Lin TY, Bear M, Du Z, Foley KP, Ying W, Barsoum J, et al. The novel HSP90 inhibitor STA-9090 exhibits activity against Kit-dependent and -independent malignant mast cell tumors. Exp Hematol. 2008;36(10):1266-77.
65. Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol. 2011;152(4):367-79.
66. Meyer PN, Roychowdhury S, Kini AR, Alkan S. HSP90 inhibitor 17AAG causes apoptosis in ATRA-resistant acute promyelocytic leukemia cells. Leuk Res. 2008;32(1):143-9.
67. Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs. 1999;17(4):361-73.
68. Neckers L. Heat shock protein 90: the cancer chaperone. J Biosci. 2007;32(3):517-30.
69. Solit DB, Chiosis G. Development and application of Hsp90 inhibitors. Drug Discov Today. 2008;13(1-2):38-43.
70. Soda M, Willert K, Kaushansky K, Geddis AE. Inhibition of GSK-3beta promotes survival and proliferation of megakaryocytic cells through a beta-catenin-independent pathway. Cell Signal. 2008;20(12):2317-23. PMCID: 2677808.
71. Rao AS, Kremenevskaja N, Resch J, Brabant G. Lithium stimulates proliferation in cultured thyrocytes by activating Wnt/beta-catenin signalling. Eur J Endocrinol. 2005;153(6):929-38.
72. Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol. 2000;20(24):9356-63. PMCID: 102192.
73. Thomas DM. Wnts, bone and cancer. J Pathol. 2010;220(1):1-4.
74. Wang JS, Wang CL, Wen JF, Wang YJ, Hu YB, Ren HZ. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest. World J Gastroenterol. 2008;14(25):3982-9. PMCID: 2725336.
75. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 2008;68(16):6643-51. PMCID: 2585745.
76. Wilson W, 3rd, Baldwin AS. Maintenance of constitutive IkappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer. Cancer Res. 2008;68(19):8156-63. PMCID: 2647811.
77. Yang J, Takahashi Y, Cheng E, Liu J, Terranova PF, Zhao B, et al. GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy and cell death. J Cell Sci. 2010;123(Pt 6):861-70. PMCID: 2831760.
78. Mai W, Kawakami K, Shakoori A, Kyo S, Miyashita K, Yokoi K, et al. Deregulated GSK3{beta} sustains gastrointestinal cancer cells survival by modulating human telomerase reverse transcriptase and telomerase. Clin Cancer Res. 2009;15(22):6810-9.
79. Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003;22(14):3557-67. PMCID: 165619.
80. Wang SA, Chuang JY, Yeh SH, Wang YT, Liu YW, Chang WC, et al. Heat shock protein 90 is important for Sp1 stability during mitosis. J Mol Biol. 2009;387(5):1106-19.
81. Lane DP, Midgley C, Hupp T. Tumour suppressor genes and molecular chaperones. Philos Trans R Soc Lond B Biol Sci. 1993;339(1289):369-72; discussion 72-3.
82. Cheung CH, Chen HH, Cheng LT, Lyu KW, Kanwar JR, Chang JY. Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells. Mol Cancer. 2010;9:77. PMCID: 2873435.
83. Hernandez A, Lopez-Lluch G, Bernal JA, Navas P, Pintor-Toro JA. Dicoumarol down-regulates human PTTG1/Securin mRNA expression through inhibition of Hsp90. Mol Cancer Ther. 2008;7(3):474-82.
84. Luo S, Wang T, Qin H, Lei H, Xia Y. The Obligatory Role of Heat Shock Protein 90 in iNOS Induction. Am J Physiol Cell Physiol. 2011.