| 研究生: |
何維修 Hor, Wei-Shiu |
|---|---|
| 論文名稱: |
Fas和Fas-L系統在腦神經膠質瘤細胞中對於免疫細胞之細胞激素表現及存活的影響 The Fas and Fas-L system on glioma cells affects the expression of cytokines and viability in immune cells |
| 指導教授: |
楊倍昌
Yang, Bei-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 細胞激素 、腦神經膠質瘤細胞 、Jurkat 細胞 、嗜中性球 |
| 外文關鍵詞: | cytokine, glioma cell, Jurkat cell, neutrophil, Fas, Fas-L |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fas-L (CD95-Ligand) 屬於腫瘤壞死因子家族的一員,Fas-L能作用在帶有Fas的細胞上並經由Fas/Fas-L作用導致細胞程式化凋亡。Fas/Fas-L的系統在抑制免疫細胞的反應中扮演一個重要的角色,Fas-L不僅表現在活化的T細胞以及自然殺手細胞上,也表現在不同來源的腫瘤細胞上。腫瘤細胞可能借由表現Fas-L來躲避免疫細胞的攻擊。本實驗使用兩株人類腦神經膠質瘤細胞細胞株為U373 MG及U118MG,並且利用Fas-L ribozyme抑制腦神經膠質瘤細胞株表現Fas-L。在免疫細胞包括:Jurkat、Molt-4、U937、HL-60、neutrophils-like以及人體周邊血液neutrophils等細胞與U373MG及U118MG衍生細胞株混合培養的實驗中。結果顯示腫瘤表現Fas-L可以影響不同免疫細胞產生不同量的IL-10、IFN-g及TNF-a mRNA。此外,Jurkat 細胞與Fas-L表現量較高的腦神經膠質瘤細胞培養或是以anti-Fas 抗體CH-11刺激後,IL-10的mRNA亦會增加。反之,以ZB4阻斷Jurkat細胞的Fas後,Jurkat細胞IL-10的表現便不受混合培養以及CH-11的影響。另外,caspase抑制劑Z-VAD-fmk及Z-IETD-fmk可以抑制Fas訊息所誘發的IL-10的表現。當neutrophils與腦神經膠質瘤衍生細胞混合培養時,neutrophils會經由Fas/Fas-L的作用使腦神經膠質瘤衍生細胞產生IL-6以及IL-8細胞激素,也因此維持了neutrophils的存活。但是其他免疫細胞的存活率並不因為與腦神經膠質瘤衍生細胞混合培養而有太大的變化。綜合以上的結果,我們認為Fas/Fas-L的作用不只是造成細胞死亡,也可能透過這樣的機制調節免疫細胞產生細胞激素。
Fas-L (CD95-Ligand) is a member of the TNF family. Engagement of Fas-L with Fas induces apoptosis in Fas-bearing cells. Fas/Fas-L system plays a crucial role in down-regulation of immune response. Fas-L is not only expressed on activated T and NK cells but also on tumors of diverse cellular origins. Recent reports suggested that tumor cells could evade immune attack through the Fas-L on the tumor cell surface (tumor Fas-L). To investigate how tumor Fas-L affects the immune response, we used in vitro co-culture system. Two human cell lines, U373MG and U118MG, were stably transfected with Fas-L- ribozyme plasmid or pEGFP-N1 control plasmid. Fas-Lribozyme was able to inhibit the expression of Fas-L in glioblastoma cell lines. To explore the effect of Fas-L, U373MG- or U118MG-derived cells were co-cultured with different immune cells including Jurkat cells, Molt-4 cells, U937 Cells, HL-60 cells, neutrophil-like cells and human peripheral circulation neutrophils. Transcripts of cytokines in immune cells were determined by reverse transcriptase-polymerase chain reaction (RT-PCR). Viability of target cells was determined by PI or MC540 staining.Tumor Fas-L on tumors affected the expressions of IFN-γ, IL-10 and TNF-a in immune cells to various levers. In addition, the IL-10 production was induced in Jurkat cells co-cultured with glioma cells having high level of Fas-L or treated with agonistic antibody CH-11 recognizing Fas. In contract, after neutrolizing the Fas on Jurket cells with antagonistic antibody ZB4, the induction of IL-10 production by CH-11 or tumor Fas-L upon co-culture glioma cells was blocked. Caspase inhibitor, Z-VAD-fmk and Z-IETD-fmk were also potent to inhibit the induction of IL-10 in Jurkat cells. Besides, we also found that the IL-6 and IL-8 production glioma cells would be enhanced via the interaction between Fas-L on neutrophils and Fas on glioma cells in this co-culture system. The coculture-induced IL-6/IL-8 of glioma cells could improve the viability of neutrophils. Other immune cells used in this study showed no significant change in cell viability, when they were in co-culture with glioma cells, carrying Fas-L –ribozyme or not. Taken together, our results suggest that the Fas/Fas-L interaction would not only induce cell death but also modulate the cytokine production on immune cells.
Adriana JM, Jonathan SR, Jorge EA. Macrophage-induced neutrophil apoptosis. J. Immunol. 165: 435-441, 2000.
Biffl Wl, Moore EE, Moore FA, Barnett CC, Carl VS, Peterson VN. Interleukin-6 delays neutrophil apoptosis. Arch. Surg. 131: 4-29, 1996.
Biffl Wl, Moore EE, Moore FA, Barnett CC Jr. Interleukin-6 delays neutrophil apoptosis via a mechanism involving platelet-activating factor. J. Trauma. 40: 575-578, 1996.
Chen YL, Wang JY, Chen SH, Yang BC. Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behavior. Br. J .Cancer. 87:359-365, 2002.
Chio CC, Wang YS, Chen YL, Yang BC. Down-regulation of Fas-L in glioma cell by ribozyme reduces cell apoptosis, tumor-infiltrating cells, and liver damage but accelerates tumor formation in nude mice. Br. J. Cancer. 85:1185-1192, 2001.
Choi C, Gillespie GY, Van WN, Benveniste EN. Fas engagement increases expression of interleukin-6 in human glioma cell. J. Neurooncol. 56: 13-19, 2002.
Choi C, Xu X, Oh J-W, Lee SJ, Gillespie GY, Park H, Jo H, and Benveniste EN. Fas-induced Expression of Chemokines in Human Glioma Cells: Involvement of Extracellular Signal-regulated Kinase 1/2 and p38 Mitogen-activated Protein Kinase. Cancer Res. 61: 3084-3091, 2001.
Daigle I, Rückert B, Schnetzler G, Simon HU. Induction of the IL-10 gene via the Fasreceptor in monocytes-anti -inflammatory mechanism in the absence of apoptosis.
Eur. J. Immunol. 30: 2991-2997, 2000.
Elizabeth AS, Huijun ZHU, Sek CC, Marion M, Donald WN, Gerald MC. Benzyloxycarbonyl-Val-Ala-Asp (Ome) fluoromethylketone (Z-VAD-FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem. J. 315: 21-24, 1996.
Fujieda S, Sunaga H, Tsuzuki H, Fan GK, Ito T, Sugimoto C, Saito H. Expression of fas (CD95) ligand is correlated with IL-10 and granulocyte colonystimulating factor expression in oral and oropharyngeal squamous cell carcinoma. Cancer Lett. 161: 73-81, 2000.
Gao Y, Herndon JM, Zhang H, Griffith TS, Ferguson TA. Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. J. Exp. Med. 188: 887-896, 1998.
Gastl GA, Abrams JS, Nanus DM, Oosterkamp R, Silver J,LiuF, Chen M, Albino AP, Bander NH. Interleukin-10 production by human carcinoma cell lines and its relationship to Interleukin-6 expression. Int. J. Cancer. 55: 96-101, 1993.
Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity. 5: 7-16, 1996.
Hohlbaum AM, Gregory MS, Ju ST, Rothstein AM. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol. 167: 6217-6224, 2001.
Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 66: 233-243, 1991.
Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat. Med. 3:738-43, 1997.
Kettritz R, Gaido ML, Luft FC, Jennette CJ, Falk RJ. Interleukin-8 delays spontaneous and tumor necrosis factor-alpha-mediated apoptosis of human. Kidney. Int. 53: 84-91, 1998.
Kim MS, Lee J, So HS, Lee KM, Jung BH, Chung SY, Moon SR, Kim NS, Ko CB, Kim HJ, Kim YK, Park R. Gamma-interferon(IFN-gamma) augments apoptotic response to mistletoe lectin-Ⅱvia upregulation of Fas/Fas L expression and caspase activation in human myeloid U937 cells. Immunopharmacol. Immunotoxicol. 23: 55-66, 2001.
Koller M, Clasbrummel B, Kollig E, Hahn MP, Muhr G. Major injury induces increased production of interleukin-10 in human granulocyte factions. Langenbecks Arch. Surg. 383: 460-465, 1998.
Lee J, Park BJ, Park JH, Yang MH, Chi SG. TGF betal inhibition of apoptosis through the transcriptional up-regulation of Bcl-X (L) in human monocytic leukemia U937 cells. Exp. Mol. Med. 31: 126-133, 1999.
Matsuda T, Saito H, Fukatsu K, Han I, Inoue T, Furukawa S, Ikeda S, Hidemura A. Cytokine- modulated inhibition of neutrophil apoptosis at local site augments exudative neutrophil functions and reflects inflammatory response after surgery. Surgery. 129: 76-85, 2001.
Miyazaki I, Cheng RK, Dosch HM.Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J. Exp. Med. 178: 439-447, 1993.
Moore KW, O`Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu. Re. Immunol. 11: 165-190, 1993.
Mosmann TR. Properties and functions of interleukin-10. Adv. Immunol. 65: 1-26, 1994.
Nagata S, Golstein P, The Fas death factor. Science. 267: 1449-1456, 1995.
Nathan I, Dizdroglu M, Bernstein L, Junker U, Lee C, muegge K, Durum SK. Induction of oxidative DNA damage in U937 cells by TNF or anti-Fas stimulation. Cytokine. 12: 881-887, 2000.
O’Connell J, O’Sullivan GC, Colline JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184:1075-1082, 1996.
Paul RW, Saas P, Dietrich PY. Role of Fas ligand (CD95) in immune escape the tumor cell strikes back. J. Immunol. 158: 4520-4529, 1994.
Philippe Saas, Jose Boucraut, Anne-Lise Quiquerez, Valerie Schnuriger, nGaelle Perrin, Sophie Desplat-Jego, Dominique bernard, Paul R.Walker, Pierre-Yves Dietrich. CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: A key role in brain inflammation? J. Immunol. 162: 2326-2333, 1999.
Pisa P, Halapi E, Pisa EK, Gerdin E, Hising C, Bucht A, Gerdin B, Kiessling R. Selective expression of Interleukin-10, interferon-γand granulocyte-macrophage colony stimulating factor in ovarian cancer biopsies. Proc. Natl. Acad. Sci. USA. 89: 7708-7715, 1992.
Prevost-Blondel A, Roth E, Rosenthal FM, Pircher H. Crucial role of TNF-alpha in CD8 T cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cell in vivo. J. Immunol. 164: 3645-3651, 2000.
Rescigno M, Piguet V, Valzasina V, Lens S, Zubler R, French L, Kindler V, Tschopp J, Castagnoli PR. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1, and the production of interferon in the absence of IL-12 during DC–T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J. Exp. Med. 192:1661-1668, 2000.
Shimonkevitz R, Bar-OD, Harris L, Northrop J, Yukl R. Granulocytes, including neutrophils, synthesize IL-10 after traumatic pancreatitis: case report. J. Trauma. 48: 165-168, 2000.
Shin EC, Ahn JM, Kim CH, Choi Y, Ahn YS, Kim H, Kim SJ, Park JH. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int. J. Cancer. 93: 262-268, 2001.
Shin EC, Shin WC, Choi Y, Kim H, Park JH, Kim SJ. Effect of interferon-gamma on the susceptibility to Fas (CD95/APO-1)-mediated. Cancer Immunol. Immunother. 50: 23-30, 2001.
Suk K, Kim S, kim YH, Kim KA, Chang I, Yagita H, Shong M, Lee MS. IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J. Immunol. 166: 4481-4489, 2001.
Ungefroren H, Voss M, Jansen M, Roeder C, Henne-Bruns D, Kremer B, Kalthoff H. Human pancertic adenocarcinomas express Fas and Fas Ligand yet are resistant to Fas-mediated apoptosis. Cancer Res. 54: 1580-1586, 1994.
Vondracek J, Sheard MA, Krejci P, Minksova K, Hofmanova J, Kozubik A. Modulation of death receptor-mediated apoptosis in differentiating human myeloid leukemia HL-60 cells. J. Leukocyte Biol. 69: 794-802, 2001.
Zheng Y, Ouaaz F, Bruzzo P, Singh V, Gerondakis S, Beg AA. NF-kappa B Rel A (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death. J. Immunol. 166: 4949-5497, 2001.