簡易檢索 / 詳目顯示

研究生: 何維修
Hor, Wei-Shiu
論文名稱: Fas和Fas-L系統在腦神經膠質瘤細胞中對於免疫細胞之細胞激素表現及存活的影響
The Fas and Fas-L system on glioma cells affects the expression of cytokines and viability in immune cells
指導教授: 楊倍昌
Yang, Bei-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 111
中文關鍵詞: 細胞激素腦神經膠質瘤細胞Jurkat 細胞嗜中性球
外文關鍵詞: cytokine, glioma cell, Jurkat cell, neutrophil, Fas, Fas-L
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Fas-L (CD95-Ligand) 屬於腫瘤壞死因子家族的一員,Fas-L能作用在帶有Fas的細胞上並經由Fas/Fas-L作用導致細胞程式化凋亡。Fas/Fas-L的系統在抑制免疫細胞的反應中扮演一個重要的角色,Fas-L不僅表現在活化的T細胞以及自然殺手細胞上,也表現在不同來源的腫瘤細胞上。腫瘤細胞可能借由表現Fas-L來躲避免疫細胞的攻擊。本實驗使用兩株人類腦神經膠質瘤細胞細胞株為U373 MG及U118MG,並且利用Fas-L ribozyme抑制腦神經膠質瘤細胞株表現Fas-L。在免疫細胞包括:Jurkat、Molt-4、U937、HL-60、neutrophils-like以及人體周邊血液neutrophils等細胞與U373MG及U118MG衍生細胞株混合培養的實驗中。結果顯示腫瘤表現Fas-L可以影響不同免疫細胞產生不同量的IL-10、IFN-g及TNF-a mRNA。此外,Jurkat 細胞與Fas-L表現量較高的腦神經膠質瘤細胞培養或是以anti-Fas 抗體CH-11刺激後,IL-10的mRNA亦會增加。反之,以ZB4阻斷Jurkat細胞的Fas後,Jurkat細胞IL-10的表現便不受混合培養以及CH-11的影響。另外,caspase抑制劑Z-VAD-fmk及Z-IETD-fmk可以抑制Fas訊息所誘發的IL-10的表現。當neutrophils與腦神經膠質瘤衍生細胞混合培養時,neutrophils會經由Fas/Fas-L的作用使腦神經膠質瘤衍生細胞產生IL-6以及IL-8細胞激素,也因此維持了neutrophils的存活。但是其他免疫細胞的存活率並不因為與腦神經膠質瘤衍生細胞混合培養而有太大的變化。綜合以上的結果,我們認為Fas/Fas-L的作用不只是造成細胞死亡,也可能透過這樣的機制調節免疫細胞產生細胞激素。

    Fas-L (CD95-Ligand) is a member of the TNF family. Engagement of Fas-L with Fas induces apoptosis in Fas-bearing cells. Fas/Fas-L system plays a crucial role in down-regulation of immune response. Fas-L is not only expressed on activated T and NK cells but also on tumors of diverse cellular origins. Recent reports suggested that tumor cells could evade immune attack through the Fas-L on the tumor cell surface (tumor Fas-L). To investigate how tumor Fas-L affects the immune response, we used in vitro co-culture system. Two human cell lines, U373MG and U118MG, were stably transfected with Fas-L- ribozyme plasmid or pEGFP-N1 control plasmid. Fas-Lribozyme was able to inhibit the expression of Fas-L in glioblastoma cell lines. To explore the effect of Fas-L, U373MG- or U118MG-derived cells were co-cultured with different immune cells including Jurkat cells, Molt-4 cells, U937 Cells, HL-60 cells, neutrophil-like cells and human peripheral circulation neutrophils. Transcripts of cytokines in immune cells were determined by reverse transcriptase-polymerase chain reaction (RT-PCR). Viability of target cells was determined by PI or MC540 staining.Tumor Fas-L on tumors affected the expressions of IFN-γ, IL-10 and TNF-a in immune cells to various levers. In addition, the IL-10 production was induced in Jurkat cells co-cultured with glioma cells having high level of Fas-L or treated with agonistic antibody CH-11 recognizing Fas. In contract, after neutrolizing the Fas on Jurket cells with antagonistic antibody ZB4, the induction of IL-10 production by CH-11 or tumor Fas-L upon co-culture glioma cells was blocked. Caspase inhibitor, Z-VAD-fmk and Z-IETD-fmk were also potent to inhibit the induction of IL-10 in Jurkat cells. Besides, we also found that the IL-6 and IL-8 production glioma cells would be enhanced via the interaction between Fas-L on neutrophils and Fas on glioma cells in this co-culture system. The coculture-induced IL-6/IL-8 of glioma cells could improve the viability of neutrophils. Other immune cells used in this study showed no significant change in cell viability, when they were in co-culture with glioma cells, carrying Fas-L –ribozyme or not. Taken together, our results suggest that the Fas/Fas-L interaction would not only induce cell death but also modulate the cytokine production on immune cells.

    目錄 中文摘要…………………………………………………………………..1 英文摘要…………………………………………………………………..2 前言………………………………………………………………………..4 實驗設計…………………………………………………………………..9 儀器與試藥………………………………………………………………12 材料與方法………………………………………………………………15 一. 細胞生長培養基……………….……………………………………15 二. 細胞部分…………………………………………………………….15 1. 免疫細胞株之生長與培養……………………………………….15 2. 人類腦神經膠質瘤延伸細胞U373(V/R) 及U118(V/R) 之 生長與培養……………………………………………………….16 三. 細胞的混合培養試驗與處理………………………………………17 1. 混合培養…………………………………………………………17 2. 以Fas抗體CH-11處理Jurkat細胞後其細胞激素IL-10 mRNA 表現量之偵測…………………………………………..18 3. 以Fas抗體ZB-4處理阻斷Fas與Fas-L………………………19 4. 以ZVAD-fmk抑制由Fas訊息所引發Jurkat細胞的caspase 的產生……………………………………………………………19 5.腦神經膠質瘤衍生細胞contact對於Jurkat細胞生存之影響…20 四. 西方墨點法…………………………………………………………21 1. sample前處理……………………………………………………21 2. 鑄膠,12.5% acrylamide gel………………………………………21 3. Loading sample………………………………………………….22 4. SDS – PAGE…………………………………………………….23 5. Transfer to PVDF membrane……………………………………23 6. Blocking…………………………………………………………24 7. Primary antibody…………………………………………………24 8. Secondary antibody………………………………………………24 9.Detection………………………………………………………….24 五. RT-PCR…………………………………………………………….25 1. 備藥………………………………………………………………25 2. 抽total mRNA之流程…………………………………………..25 3. cDAN 之合成……………………………………………………26 4. PCR amplication………………………………………………….27 5.Run gel…………………………………………………………….28 六. 胞凋亡之偵測……………………………………………………….29 1. PI stain…………………………………………………………….29 2. Merocyanine 540 strain……………………………………………30 七. 以DMSO誘發HL-60細胞分化成neutrophil-like細胞………….31 八. MTS-Assay………………………………………………………….31 1. 以MTS偵測經DMSO處理過6天之HL-60細胞存活情形…32 2. 以MTS偵測neutrophils與U373(V) 或U373(R) 混合培養 時neutrophils存活之情形………………………………………32 九. 腦神經膠質瘤衍生細胞的contact對於neutrophil細胞生存之影 響分析………………………………………………………………33 十. Neutrophils與腦神經膠質瘤細胞混合培養或是CH-11刺激對 於腦神經膠質瘤細胞表現細胞激素的影響………………………34 十一. 以細胞激素IL-6及IL-8之中和抗體作用於是中性球與腦神 經膠質瘤細胞混合培養時neutrophils生存影響………………35 十二. 以Fas抗體(ZB-4) 中和腦神經膠質瘤細胞或嗜中性球之Fas 接受器後進行混合培養時嗜中性球生存影響之分析………….35 1. 以Fas抗體(ZB-4) 中和腦神經膠質瘤細胞之Fas接受器後進 行混合培養時嗜中性球生存影響之分析………………………..35 2. 以Fas抗體(ZB-4) 中和嗜中性球之Fas接受器後進行混合 培養時嗜中性球生存影響之分析………………………………..36 結果……………………………………………………………………….38 討論……………………………………………………………………….50 參考文獻………………………………………………………………….58 Fig(圖)…………………………………………………………………….66 圖目錄 Fig. 1:以螢光顯微鏡觀察glioma cells U373(V)、U373(R)、U118 (V)U118(R) 等細胞………………………………………………66 Fig. 2:以西方墨點法分析glioma-derived cells的Fas-L蛋白質的 表現………………………………………………………………..67 Fig. 3:以PI或MC540染與U373(V) 或U373(R) 混合培養的 Jurkat cells apoptosis的情形………………………………………68 Fig. 4:以PI染與U118(V) 或118(R) 混合培養的Jurkat cells apoptosis的情形……………………………………………………69 Fig. 5:以PI染與U373(V) 或U373(R) 混合培養的Molt-4 cells apoptosis的情形…………………………………………………….70 Fig. 6:以PI或MC540染與U373(V) 或U373(R) 混合培養的 U937 cells apoptosis的情形………………………………………...71 Fig. 7:以PI染與U118(V) 或118(R) 混合培養的U937 cells apoptosis的情形…………………………………………………….72 Fig. 8:以PI或MC540染與U373(V) 或U373(R) 混合培養的 HL-60 cells apoptosis的情形………………………………………73 Fig. 9:以PI染與U118(V) 或118(R) 混合培養的HL-60 cells apoptosis的情形…………………………………………………..74 Fig. 10:以RT-PCR分析與glioma-derived cells 混合培養後之 Jurkat cells 細胞激素mRNA的表現…………………………….75 Fig. 11:以RT-PCR 分析與glioma-derived cells混合培養後之 Molt-4 cells細胞激素mRNA的表現…………………………76 Fig. 12:以RT-PCR分析與glioma-derived cells 混合培養後之 Jurkat cells 細胞激素mRNA的表現…………………………77 Fig. 13:以RT-PCR 分析與glioma-derived cells混合培養後之 HL-60 cells細胞激素mRNA的表現…………………………78 Fig. 14:Neutrophils-like cells的細胞形態及生長曲線………………..79 Fig. 15:以RT-PCR分析與glioma-derived cells 混合培養後之neutrophils-like cells 細胞激素mRNA的表現……………….80 Fig. 16:以RT-PCR分析與glioma-derived cells混合培養後之 neutrophils細胞激素mRNA的表現………………………….81 Fig. 17:以CH-11處理Jurkat cells後細胞產生細胞激素IL-10 mRNA的情形…………………………………………………..82 Fig. 18:以CH-11處理Jurkat cells後Jurkat cells apoptosis的 情形……………………………………………………………..83 Fig. 19:以ZB4抗體處理Jurkat cells後再進行混合培養時 Jurkat cells產生細胞激素IL-10 mRNA的情形………………84 Fig. 20:以ZB4抗體抑制CH-11所造成Jurkat cells apoptosis 之情形……………………………………………………………85 Fig. 21:以Z-VAD-fmk抑制與U118(V) 混合培養時Jurkat cells IL-10 mRNA的表現…………………………………………86 Fig. 22:以Z-VAD-fmk處理Jurkat cells 抑制CH-11所造成 Jurkat cells apoptosis……………………………………………..87 Fig. 23:以Z-IETD-fmk抑制與U118(V) 混合培養時Jurkat cells IL-10 mRNA的表現………………………………………..88 Fig. 24:以Z-IETD-fmk處理Jurkat cells 抑制CH-11所造成 Jurkat cells apoptosis…………………………………………….89 Fig. 25:Jurkat cells與glioma-derived cells混合培養時加入 CH-11所造成的Jurkat cells apoptosis的情形…………………90 Fig. 26:Jurkat cells與glioma-derived cells以transwell隔離 混合培養時再加入CH-11所造成的Jurkat cells apoptosis 的情形分析………………………………………….91 Fig. 27:Neutrophils於體外培養時存活情形分析………………………92 Fig. 28:以PI染neutrophils 於體外培養時細胞apoptosis 的情形……………………………………………………………93 Fig. 29:以MTS assay 及cell count的方式偵測 neutrophils與U373(V) 或U373(R) 混合培養 時neutrophils存活的情形………………………………………94 Fig. 30:Neutrophils與glioma-derived cells U373(V) 或 U373(R) 混合培養的情況下以flow cytometry的方式 偵測neutrophils於體外培養時的存活情形……………………95 Fig. 31:統合12個不同人所分離出的neutrophils再與 glioma-derived cells U373(V) 或U373(R) 混合 培養後neutrophils 死亡情形之分析…………………………..96 Fig. 32:Neutrophils與glioma-derived cells U118(V) 或 U118(R) 混合培養的情況下以flow cytometry的 方式偵測neutrophils於體外培養時的存活情形………………97 Fig. 33:統合5個不同人所分離出的neutrophils再與 glioma-derived cells U118(V) 或U118(R) 混合 培養後neutrophils 死亡情形之分析…………………………..98 Fig. 34:Neutrophils與glioma cells混合培養的情況下以 flow cytometry的方式偵測neutrophils於體外培 養時細胞顆粒 (FSC) 及大小(SSC) 變化的情形……………..99 Fig. 35:Flow cytometry的方式偵測neutrophils於體外 培養時細胞顆粒(FSC) 及大小(SSC) 變化的情形…………...100 Fig. 36:以transwell隔開neutrophils與U373(V) 或U373(R) 的contact或是以conditioned medium來培養 neutrophils後再以flow cytometry的方式偵測 neutrophils apoptosis……………………………………………101 Fig. 37:以transwell隔開neutrophils與U118(V) 或 U118(R) 的contact或是以conditioned medium 來培養neutrophils後再以flow cytometry的方式 偵測neutrophils apoptosis………………………………………102 Fig. 38:重複Fig. 36之實驗後所得到之結果………………………….103 Fig. 39:重複Fig. 37之實驗後所得到之結果………………………….104 Fig. 40:以conditioned medium培養neutrophils後細胞 形態的改變情形………………………………………………...105 Fig. 41:Nutrophils與glioma-derived cells混合培養後 glioma-derived cells IL-6及IL-8 mRNA產生之情形…………106 Fig. 42:以CH-11刺激glioma-derived cells後IL-6及 IL-8 mRNA產生之情形………………………………………..107 Fig. 43:以ZB4阻斷glioma-derived cells的Fas再與 neutrophils混合培養24小時後glioma-derived cells IL-6 及IL-8mRNA產生之情形……………………………………..108 Fig. 44:以ZB4中和性抗體中和neutrophils或glioma -derived cells的Fas再混合培養24小時後分析 neutrophils存活的情形…………………………………………109 Fig. 45:以IL-6及IL-8中和性抗體中和neutrophils 與glioma-derived cells混合培養時培養液內之IL-6 及IL-8 細胞激素後對於neutrophils存活影響之分析……….110 附圖(1)…………………………………………………………………..111

    Adriana JM, Jonathan SR, Jorge EA. Macrophage-induced neutrophil apoptosis. J. Immunol. 165: 435-441, 2000.
    Biffl Wl, Moore EE, Moore FA, Barnett CC, Carl VS, Peterson VN. Interleukin-6 delays neutrophil apoptosis. Arch. Surg. 131: 4-29, 1996.
    Biffl Wl, Moore EE, Moore FA, Barnett CC Jr. Interleukin-6 delays neutrophil apoptosis via a mechanism involving platelet-activating factor. J. Trauma. 40: 575-578, 1996.
    Chen YL, Wang JY, Chen SH, Yang BC. Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behavior. Br. J .Cancer. 87:359-365, 2002.
    Chio CC, Wang YS, Chen YL, Yang BC. Down-regulation of Fas-L in glioma cell by ribozyme reduces cell apoptosis, tumor-infiltrating cells, and liver damage but accelerates tumor formation in nude mice. Br. J. Cancer. 85:1185-1192, 2001.
    Choi C, Gillespie GY, Van WN, Benveniste EN. Fas engagement increases expression of interleukin-6 in human glioma cell. J. Neurooncol. 56: 13-19, 2002.
    Choi C, Xu X, Oh J-W, Lee SJ, Gillespie GY, Park H, Jo H, and Benveniste EN. Fas-induced Expression of Chemokines in Human Glioma Cells: Involvement of Extracellular Signal-regulated Kinase 1/2 and p38 Mitogen-activated Protein Kinase. Cancer Res. 61: 3084-3091, 2001.
    Daigle I, Rückert B, Schnetzler G, Simon HU. Induction of the IL-10 gene via the Fasreceptor in monocytes-anti -inflammatory mechanism in the absence of apoptosis.
    Eur. J. Immunol. 30: 2991-2997, 2000.
    Elizabeth AS, Huijun ZHU, Sek CC, Marion M, Donald WN, Gerald MC. Benzyloxycarbonyl-Val-Ala-Asp (Ome) fluoromethylketone (Z-VAD-FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem. J. 315: 21-24, 1996.
    Fujieda S, Sunaga H, Tsuzuki H, Fan GK, Ito T, Sugimoto C, Saito H. Expression of fas (CD95) ligand is correlated with IL-10 and granulocyte colonystimulating factor expression in oral and oropharyngeal squamous cell carcinoma. Cancer Lett. 161: 73-81, 2000.
    Gao Y, Herndon JM, Zhang H, Griffith TS, Ferguson TA. Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. J. Exp. Med. 188: 887-896, 1998.
    Gastl GA, Abrams JS, Nanus DM, Oosterkamp R, Silver J,LiuF, Chen M, Albino AP, Bander NH. Interleukin-10 production by human carcinoma cell lines and its relationship to Interleukin-6 expression. Int. J. Cancer. 55: 96-101, 1993.
    Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity. 5: 7-16, 1996.
    Hohlbaum AM, Gregory MS, Ju ST, Rothstein AM. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol. 167: 6217-6224, 2001.
    Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 66: 233-243, 1991.
    Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat. Med. 3:738-43, 1997.
    Kettritz R, Gaido ML, Luft FC, Jennette CJ, Falk RJ. Interleukin-8 delays spontaneous and tumor necrosis factor-alpha-mediated apoptosis of human. Kidney. Int. 53: 84-91, 1998.
    Kim MS, Lee J, So HS, Lee KM, Jung BH, Chung SY, Moon SR, Kim NS, Ko CB, Kim HJ, Kim YK, Park R. Gamma-interferon(IFN-gamma) augments apoptotic response to mistletoe lectin-Ⅱvia upregulation of Fas/Fas L expression and caspase activation in human myeloid U937 cells. Immunopharmacol. Immunotoxicol. 23: 55-66, 2001.
    Koller M, Clasbrummel B, Kollig E, Hahn MP, Muhr G. Major injury induces increased production of interleukin-10 in human granulocyte factions. Langenbecks Arch. Surg. 383: 460-465, 1998.
    Lee J, Park BJ, Park JH, Yang MH, Chi SG. TGF betal inhibition of apoptosis through the transcriptional up-regulation of Bcl-X (L) in human monocytic leukemia U937 cells. Exp. Mol. Med. 31: 126-133, 1999.
    Matsuda T, Saito H, Fukatsu K, Han I, Inoue T, Furukawa S, Ikeda S, Hidemura A. Cytokine- modulated inhibition of neutrophil apoptosis at local site augments exudative neutrophil functions and reflects inflammatory response after surgery. Surgery. 129: 76-85, 2001.
    Miyazaki I, Cheng RK, Dosch HM.Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J. Exp. Med. 178: 439-447, 1993.
    Moore KW, O`Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu. Re. Immunol. 11: 165-190, 1993.
    Mosmann TR. Properties and functions of interleukin-10. Adv. Immunol. 65: 1-26, 1994.
    Nagata S, Golstein P, The Fas death factor. Science. 267: 1449-1456, 1995.
    Nathan I, Dizdroglu M, Bernstein L, Junker U, Lee C, muegge K, Durum SK. Induction of oxidative DNA damage in U937 cells by TNF or anti-Fas stimulation. Cytokine. 12: 881-887, 2000.
    O’Connell J, O’Sullivan GC, Colline JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184:1075-1082, 1996.
    Paul RW, Saas P, Dietrich PY. Role of Fas ligand (CD95) in immune escape the tumor cell strikes back. J. Immunol. 158: 4520-4529, 1994.
    Philippe Saas, Jose Boucraut, Anne-Lise Quiquerez, Valerie Schnuriger, nGaelle Perrin, Sophie Desplat-Jego, Dominique bernard, Paul R.Walker, Pierre-Yves Dietrich. CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: A key role in brain inflammation? J. Immunol. 162: 2326-2333, 1999.
    Pisa P, Halapi E, Pisa EK, Gerdin E, Hising C, Bucht A, Gerdin B, Kiessling R. Selective expression of Interleukin-10, interferon-γand granulocyte-macrophage colony stimulating factor in ovarian cancer biopsies. Proc. Natl. Acad. Sci. USA. 89: 7708-7715, 1992.
    Prevost-Blondel A, Roth E, Rosenthal FM, Pircher H. Crucial role of TNF-alpha in CD8 T cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cell in vivo. J. Immunol. 164: 3645-3651, 2000.
    Rescigno M, Piguet V, Valzasina V, Lens S, Zubler R, French L, Kindler V, Tschopp J, Castagnoli PR. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1, and the production of interferon in the absence of IL-12 during DC–T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J. Exp. Med. 192:1661-1668, 2000.
    Shimonkevitz R, Bar-OD, Harris L, Northrop J, Yukl R. Granulocytes, including neutrophils, synthesize IL-10 after traumatic pancreatitis: case report. J. Trauma. 48: 165-168, 2000.
    Shin EC, Ahn JM, Kim CH, Choi Y, Ahn YS, Kim H, Kim SJ, Park JH. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int. J. Cancer. 93: 262-268, 2001.
    Shin EC, Shin WC, Choi Y, Kim H, Park JH, Kim SJ. Effect of interferon-gamma on the susceptibility to Fas (CD95/APO-1)-mediated. Cancer Immunol. Immunother. 50: 23-30, 2001.
    Suk K, Kim S, kim YH, Kim KA, Chang I, Yagita H, Shong M, Lee MS. IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J. Immunol. 166: 4481-4489, 2001.
    Ungefroren H, Voss M, Jansen M, Roeder C, Henne-Bruns D, Kremer B, Kalthoff H. Human pancertic adenocarcinomas express Fas and Fas Ligand yet are resistant to Fas-mediated apoptosis. Cancer Res. 54: 1580-1586, 1994.
    Vondracek J, Sheard MA, Krejci P, Minksova K, Hofmanova J, Kozubik A. Modulation of death receptor-mediated apoptosis in differentiating human myeloid leukemia HL-60 cells. J. Leukocyte Biol. 69: 794-802, 2001.
    Zheng Y, Ouaaz F, Bruzzo P, Singh V, Gerondakis S, Beg AA. NF-kappa B Rel A (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death. J. Immunol. 166: 4949-5497, 2001.

    下載圖示 校內:2003-08-19公開
    校外:2003-08-19公開
    QR CODE