簡易檢索 / 詳目顯示

研究生: 鄭文蕙
Cheng, Wen-Hui
論文名稱: 開發雙層表面處理之聚乳酸/甘醇酸生物支架於維持軟骨細胞原型及組織整合之功效
Develop Surface Treated Biphasic Poly(lactic-co-glycolic acid) Scaffolds to Maintain Chondrocytes Phenotype and Interface Integration
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 雙層聚乳酸聚甘醇酸生物支架表面處理骨軟骨再生
外文關鍵詞: Biphasic Poly(lactic-co-glycolic acid) (PLGA) scaffold, Surface treated, Osteochondral Regeneration
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 關節軟骨一旦受損便難以自行修復,故至今關節軟骨的治療面臨很大的挑戰。目前臨床上的治療仍有很多問題存在,例如: 骨軟骨微創修復後之新生組織多為纖維軟骨、組織與填補材料之間的整合性不高以及在體外培養時軟骨細胞的去分化等等,而組織工程則希望可以結合細胞及生物支架為軟骨修復治療方面提供一種替代方案,其中生物支架的結構與其化學性質皆可能影響組織之修復。故本實驗期許結合小孔洞及大孔洞的聚乳酸-甘醇酸生物支架可分別使軟骨及硬骨細胞貼附;同時結合乙二胺及酪胺兩種表面處理的方式促進雙層聚乳酸聚甘醇酸生物支架與組織之間的整合。
    本研究第一部分成功利用鹽析法製備直徑3 mm 、高度3 mm、孔洞率89%之雙層聚乳酸-甘醇酸生物支架,而上下層孔徑大小分別為100 μm及300 μm,其目的為在培養軟骨細胞過程維持其原始型態。利用冷凍切片及電子顯微鏡之結果皆可初步得知軟骨細胞在5天的培養下可維持其原始型態。
    本研究第二部分主要是將未處理之控制組、乙二胺及酪胺表面處理後之雙層聚乳酸-甘醇酸生物支架組別置入直徑8 mm之豬之骨軟骨組織中直徑3 mm之缺陷部位共培養4周後,觀察表面處理過後生物支架是否能促進支架與組織之間的整合性。從機械測試的結果可得知利用酪胺進行前處理的組別與豬骨軟骨組織在體外共培養後黏附剪力與其他組存在顯著性差異,另外自免疫化學組織染色之結果中可得知酪胺前處理之組別其修復後之新生軟骨表現多為透明軟骨。
    整體而言,以體外培養之結果,100 μm孔洞大小之PLGA生物支架可有效維持軟骨細胞之原始型態,另外利用酪胺進行前處理的生物支架在與組織整合方面有其效用。

    Repairing damaged articular cartilage is challenging since its limited self-repair ability of hyaline cartilage. Nowadays, several treatments are available for repairing damaged cartilage. However, most of them still remain controversial for numerous problems. For instance, the repaired tissues by microfracture turned into fibrous cartilage. And autologous osteochondral plug repairmen exists some issue about integration with native tissue. Also, chondrocytes in vitro monolayer culture will lead to dedifferentiation then lose its original phenotype. Tissue engineering cartilage provides alternative approach to provide hope for cartilage repairing. The structure and property of scaffold can determine the outcome of tissue regeneration. This study proposes to use small and large pore size of PLGA scaffold to maintain chondrocytes and osteoblasts respectively; and surface treatment on scaffold with ethylenediamine or tyramine to assist scaffold and tissue integration.
    In part I study, diameter 3 mm, height 3 mm PLGA scaffold was fabricated by salt leaching method. The biphasic PLGA scaffold with 89% porosity and 300 μm and 100 μm pore size for bottom and top layer respectively, was fabricated for chondrocytes culture. The results from histology and SEM show the chondrocytes remain its rounded phenotype appearance in 5-day culture in small pore size scaffold. From cell membrane label fluorescent and SEM results, both examine methods prove that after 5 days culture in small pore size upper layer scaffold, chondrocytes can maintain its rounded phenotype.
    In part II study, biphasic scaffolds treated with ethylenediamine or tyramine and no treatment control group were pressed into 8 mm porcine osteochondral plug with defect 3 mm diameter and 3 mm depth for 4 weeks to test the integration of these scaffolds. The push out test was practiced to confirm the adhesive stress between scaffold and porcine cartilage. And this result shows tyramine treated group has the highest adhesive stress. On the other hand, from immunohistochemical stain, tyramine treated group appears better hyaline cartilage regeneration.
    This study shows small pore size scaffold can successfully maintain chondrocytes phenotype, and surface tyramine treated PLGA scaffold can assist its integration with surrounding tissue.

    中文摘要 I Abstract II 誌謝 IV Table of Contents V List of Tables VII List of Figures VIII Chapter 1: Introduction 1 1.1 Articular Cartilage Biology 1 1.2 Osteochondritis Dissecans (OCD) 3 1.3 Chondrocytes biology 6 1.4 Poly (lactic-co-glycolic acid) (PLGA) Scaffold 8 1.5 Motivation and Aim 10 1.5.1 Part I: Chondrocytes phenotype’s maintenance by scaffold pore size 10 1.5.2 Part II: Surface modified to improve scaffold and tissue integration 10 Chapter 2: Materials and Methods 11 2.1 Experiment flow chart 11 2.1.1 Chondrocytes phenotype’s maintenance by scaffold pore size 11 2.1.2 Surface modified to improve scaffold and tissue integration 11 2.2 Instruments 12 2.3 Materials 13 2.4 Fabrication of bilayers porous PLGA scaffolds 15 2.5 Physical properties of biphasic scaffolds 15 2.6 Chondrocytes isolation 16 2.7 Chondrocytes appearance 16 2.8 Surface modifications 17 2.8.1 Ethylenediamine (ED) 17 2.8.2 Tyramine 18 2.9 Water contact angle 18 2.10 Cell viability 18 2.11 Osteochondral host tissue plug 20 2.12 Bio-mechanical outcome measurements 22 2.13 Histological techniques 24 2.14 Immunohistochemical (IHC) processing 24 2.15 Statistical analysis 24 Chapter 3: Results 26 3.1 Part I: Chondrocytes phenotype’s maintenance by scaffold pore size 26 3.1.1 Macroscopic evaluations 26 3.1.2 Physical property of biphaisc PLGA scaffolds 26 3.1.3 Cell membrane fluorescently stained 29 3.1.4 SEM images 31 3.2 Part II: Surface modified to improve scaffold and tissue integration 32 3.2.1 Water contact angle 32 3.2.2 X-ray Photoelectron Spectrometer (XPS) evaluation 32 3.2.3 Cell toxicity 34 3.2.4 Evaluation of mechanical test 35 3.2.5 Histological and immunohistochemical analysis 36 Chapte 4: Discussion 43 4.1 Part I: Chondrocytes phenotype’s maintenance by scaffold pore size 43 4.2 Part II: Surface modified to improve scaffold and tissue integration 47 Chapter 5: Conclusion 52 Chapter 6: Limitations and Future works 54 Reference 55

    [1] Buckwalter J. A., Mankin H. J., Grodzinsky A. J. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465-480.
    [2] Mandelbaum Christoph Erggelet; Bert R. Principles of cartilage repair. Germany: Steinkopff Verlag; 2008.
    [3] Allan K. S., Pilliar R. M., Wang J., Grynpas M. D., Kandel R. A. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 2007;13:167-177.
    [4] Kwan Tat S., Pelletier J. P., Amiable N., Boileau C., Lavigne M., Martel-Pelletier J. Treatment with ephrin B2 positively impacts the abnormal metabolism of human osteoarthritic chondrocytes. Arthritis Res Ther. 2009;11:R119.
    [5] Temenoff J. S., Mikos A. G. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000;21:431-440.
    [6] Ulrich-Vinther M., Maloney M. D., Schwarz E. M., Rosier R., O'Keefe R. J. Articular cartilage biology. J Am Acad Orthop Surg. 2003;11:421-430.
    [7] Jazrawi L. M., Alaia M. J., Chang G., Fitzgerald E. F., Recht M. P. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg. 2011;19:420-429.
    [8] Buckwalter J. A., Mow V. C., Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg. 1994;2:192-201.
    [9] Martin J. A., Buckwalter J. A. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology. 2002;3:257-264.
    [10] Moktassi A., Popkin C. A., White L. M., Murnaghan M. L. Imaging of osteochondritis dissecans. Orthop Clin North Am. 2012;43:201-211, v-vi.
    [11] Kocher M. S., Tucker R., Ganley T. J., Flynn J. M. Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med. 2006;34:1181-1191.
    [12] Shea K. G., Jacobs J. C., Jr., Carey J. L., Anderson A. F., Oxford J. T. Osteochondritis dissecans knee histology studies have variable findings and theories of etiology. Clin Orthop Relat Res. 2013;471:1127-1136.
    [13] Versier G., Dubrana F., French Arthroscopy Society. Treatment of knee cartilage defect in 2010. Orthop Traumatol Surg Res. 2011;97:S140-153.
    [14] Goyal D., Keyhani S., Lee E. H., Hui J. H. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29:1579-1588.
    [15] Mithoefer K. Complex articular cartilage restoration. Sports Med Arthrosc. 2013;21:31-37.
    [16] Bedi A., Feeley B. T., Williams R. J., 3rd. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92:994-1009.
    [17] Mollon B., Kandel R., Chahal J., Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartilage. 2013;21:1824-1833.
    [18] Bobic V. Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc. 1996;3:262-264.
    [19] Hangody L., Kish G., Karpati Z., Udvarhelyi I., Szigeti I., Bely M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics. 1998;21:751-756.
    [20] Solheim E., Hegna J., Oyen J., Austgulen O. K., Harlem T., Strand T. Osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee: results at 5 to 9 years. Knee. 2010;17:84-87.
    [21] Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O., Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889-895.
    [22] Kon E., Verdonk P., Condello V., Delcogliano M., Dhollander A., Filardo G., Pignotti E., Marcacci M. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med. 2009;37 Suppl 1:156S-166S.
    [23] Mase V. J., Jr., Hsu J. R., Wolf S. E., Wenke J. C., Baer D. G., Owens J., Badylak S. F., Walters T. J. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics. 2010;33:511.
    [24] Grigolo B., Lisignoli G., Piacentini A., Fiorini M., Gobbi P., Mazzotti G., Duca M., Pavesio A., Facchini A. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials. 2002;23:1187-1195.
    [25] Stockwell R. A. The cell density of human articular and costal cartilage. J Anat. 1967;101:753-763.
    [26] Hynes R. O. Cell adhesion: old and new questions. Trends Cell Biol. 1999;9:M33-37.
    [27] Rosso F., Giordano A., Barbarisi M., Barbarisi A. From cell-ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174-180.
    [28] Endres M., Neumann K., Zhou B., Freymann U., Pretzel D., Stoffel M., Kinne R. W., Kaps C. An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts. J Orthop Surg Res. 2012;7:37.
    [29] Brodkin K. R., Garcia A. J., Levenston M. E. Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials. 2004;25:5929-5938.
    [30] Benya P. D., Padilla S. R., Nimni M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978;15:1313-1321.
    [31] Mayne R., Vail M. S., Mayne P. M., Miller E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A. 1976;73:1674-1678.
    [32] von der Mark K., Gauss V., von der Mark H., Muller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267:531-532.
    [33] Zhang Y., Wu Y., Cao L., Lee V., Chen L., Lin Z., Kiani C., Adams M. E., Yang B. B. Versican modulates embryonic chondrocyte morphology via the epidermal growth factor-like motifs in G3. Exp Cell Res. 2001;263:33-42.
    [34] Dowling E. P., Ronan W., McGarry J. P. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater. 2013;9:5943-5955.
    [35] Kuo S. M., Chiang M. Y., Lan C. W., Niu G. C., Chang S. J. Evaluation of nanoarchitectured collagen type II molecules on cartilage engineering. J Biomed Mater Res A. 2013;101:368-377.
    [36] Thakkar S., Ghebes C. A., Ahmed M., Kelder C., van Blitterswijk C. A., Saris D., Fernandes H. A., Moroni L. Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication. 2013;5:025003.
    [37] Schagemann J. C., Paul S., Casper M. E., Rohwedel J., Kramer J., Kaps C., Mittelstaedt H., Fehr M., Reinholz G. G. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-epsilon-caprolactone scaffolds. J Biomed Mater Res A. 2013;101:1620-1628.
    [38] Nakamura T., Hitomi S., Watanabe S., Shimizu Y., Jamshidi K., Hyon S. H., Ikada Y. Bioabsorption of polylactides with different molecular properties. J Biomed Mater Res. 1989;23:1115-1130.
    [39] Jain R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475-2490.
    [40] Gwak S. J., Kim B. S. Poly(lactic-co-glycolic acid) nanosphere as a vehicle for gene delivery to human cord blood-derived mesenchymal stem cells: comparison with polyethylenimine. Biotechnology Letters. 2008;30:1177-1182.
    [41] Karp J. M., Shoichet M. S., Davies J. E. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. Journal of Biomedical Materials Research Part A. 2003;64:388-396.
    [42] Uematsu K., Hattori K., Ishimoto Y., Yamauchi J., Habata T., Takakura Y., Ohgushi H., Fukuchi T., Sato M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26:4273-4279.
    [43] Xu Z. C., Zhang W. J., Li H., Cui L., Cen L., Zhou G. D., Liu W., Cao Y. Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Biomaterials. 2008;29:1464-1472.
    [44] Chang N. J., Jhung Y. R., Issariyakul N., Yao C. K., Yeh M. L. Synergistic Stimuli by Hydrodynamic Pressure and Hydrophilic Coating on PLGA Scaffolds for Extracellular Matrix Synthesis of Engineered Cartilage. J Biomater Sci Polym Ed. 2011.
    [45] Chang N. J., Lin C. C., Li C. F., Wang D. A., Issariyaku N., Yeh M. L. The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials. 2012;33:3153-3163.
    [46] Chang N. J., Lam C. F., Lin C. C., Chen W. L., Li C. F., Lin Y. T., Yeh M. L. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthr Cartilage. 2013;21:1613-1622.
    [47] Chang Nai-Jen. Fabricating PLGA sponge scaffold integrated with gelatin/hyaluronic acid for engineering cartilage. Tainan, Taiwan: National Cheng Kung University 2009.
    [48] Li Chien-Te. Development of three dimensional polyethylene glycol based hydrogel for tissue engineering scaffold application. Tainan, Taiwan: National Cheng Kung University; 2012.
    [49] Henry A. C., Tutt T. J., Galloway M., Davidson Y. Y., McWhorter C. S., Soper S. A., McCarley R. L. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Analytical Chemistry. 2000;72:5331-5337.
    [50] Dominick W. D., Berhane B. T., Mecomber J. S., Limbach P. A. Covalent immobilization of proteases and nucleases to poly(methylmethacrylate). Anal Bioanal Chem. 2003;376:349-354.
    [51] Croll T. I., O'Connor A. J., Stevens G. W., Cooper-White J. J. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules. 2004;5:463-473.
    [52] Fixe F., Dufva M., Telleman P., Christensen C. B. Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res. 2004;32:e9.
    [53] Fixe F., Dufva M., Telleman P., Christensen C. B. One-step immobilization of aminated and thiolated DNA onto poly(methylmethacrylate) (PMMA) substrates. Lab Chip. 2004;4:191-195.
    [54] Zhu Y., Gao C., He T., Shen J. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials. 2004;25:423-430.
    [55] Zhu Y., Gao C., Liu Y., Shen J. Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods. J Biomed Mater Res A. 2004;69:436-443.
    [56] Brown L., Koerner T., Horton J. H., Oleschuk R. D. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip. 2006;6:66-73.
    [57] Jin R., Hiemstra C., Zhong Z. Y., Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials. 2007;28:2791-2800.
    [58] Jin R., Teixeira L. S. M., Dijkstra P. J., Zhong Z. Y., van Blitterswijk C. A., Karperien M., Feijen J. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng. 2010;16:2429-2440.
    [59] Jin R., Teixeira L. S. M., Dijkstra P. J., van Blitterswijk C. A., Karperien M., Feijen J. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release. 2011;152:186-195.
    [60] Moreira Teixeira L. S., Bijl S., Pully V. V., Otto C., Jin R., Feijen J., van Blitterswijk C. A., Dijkstra P. J., Karperien M. Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials. 2012;33:3164-3174.
    [61] Ahmed S. A., Gogal R. M., Jr., Walsh J. E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods. 1994;170:211-224.
    [62] de Fries R., Mitsuhashi M. Quantification of mitogen induced human lymphocyte proliferation: comparison of alamarBlue assay to 3H-thymidine incorporation assay. J Clin Lab Anal. 1995;9:89-95.
    [63] Voytik-Harbin S. L., Brightman A. O., Waisner B., Lamar C. H., Badylak S. F. Application and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts. In Vitro Cell Dev Biol Anim. 1998;34:239-246.
    [64] Fields R. D., Lancaster M. V. Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am Biotechnol Lab. 1993;11:48-50.
    [65] Lancaster M.V., Fields R.D. Microbiocides and conversion of resazurin to resorfurin. Google Patents; 1996.
    [66] van de Breevaart Bravenboer J., In der Maur C. D., Bos P. K., Feenstra L., Verhaar J. A., Weinans H., van Osch G. J. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res Ther. 2004;6:R469-476.
    [67] Chan Y., Walmsley R. P. Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Phys Ther. 1997;77:1755-1762.
    [68] Horn M. [The Wilcoxon, Mann and Whitney test: conditions under which and hypotheses for which it is applicable]. Z Versuchstierkd. 1990;33:109-114.
    [69] Scholes P. D., Coombes A. G., Illum L., Davis S. S., Watts J. F., Ustariz C., Vert M., Davies M. C. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release. 1999;59:261-278.
    [70] Charles P. T., Stubbs V. R., Soto C. M., Martin B. D., White B. J., Taitt C. R. Reduction of Non-Specific Protein Adsorption Using Poly(ethylene) Glycol (PEG) Modified Polyacrylate Hydrogels In Immunoassays for Staphylococcal Enterotoxin B Detection. Sensors (Basel). 2009;9:645-655.
    [71] Mesallati T., Buckley C. T., Nagel T., Kelly D. J. Scaffold architecture determines chondrocyte response to externally applied dynamic compression. Biomech Model Mechanobiol. 2013;12:889-899.
    [72] Curtis A., Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573-1583.
    [73] Chen C. S., Mrksich M., Huang S., Whitesides G. M., Ingber D. E. Geometric control of cell life and death. Science. 1997;276:1425-1428.
    [74] Dalby M. J., Riehle M. O., Johnstone H., Affrossman S., Curtis A. S. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials. 2002;23:2945-2954.
    [75] Hulbert S. F., Young F. A., Mathews R. S., Klawitter J. J., Talbert C. D., Stelling F. H. Potential of ceramic materials as permanently implantable skeletal prostheses. Journal of Biomedical Materials Research. 1970;4:433-456.
    [76] Kuboki Y., Jin Q., Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am. 2001;83-A Suppl 1:S105-115.
    [77] Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317-324.
    [78] Gotz H. E., Muller M., Emmel A., Holzwarth U., Erben R. G., Stangl R. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials. 2004;25:4057-4064.
    [79] Freed L. E., Marquis J. C., Nohria A., Emmanual J., Mikos A. G., Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. Journal of Biomedical Materials Research. 1993;27:11-23.
    [80] Freed L. E., Vunjak-Novakovic G., Biron R. J., Eagles D. B., Lesnoy D. C., Barlow S. K., Langer R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y). 1994;12:689-693.
    [81] Freed L. E., Hollander A. P., Martin I., Barry J. R., Langer R., Vunjak-Novakovic G. Chondrogenesis in a cell-polymer-bioreactor system. Experimental Cell Research. 1998;240:58-65.
    [82] Li W. J., Jiang Y. J., Tuan R. S. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. 2006;12:1775-1785.
    [83] Singh P., Schwarzbauer J. E. Fibronectin and stem cell differentiation - lessons from chondrogenesis. J Cell Sci. 2012;125:3703-3712.
    [84] Matta C., Zakany R. Calcium signalling in chondrogenesis: implications for cartilage repair. Front Biosci (Schol Ed). 2013;5:305-324.
    [85] Wang Y., Ding C., Wluka A. E., Davis S., Ebeling P. R., Jones G., Cicuttini F. M. Factors affecting progression of knee cartilage defects in normal subjects over 2 years. Rheumatology (Oxford). 2006;45:79-84.
    [86] Guettler J. H., Demetropoulos C. K., Yang K. H., Jurist K. A. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med. 2004;32:1451-1458.
    [87] Homminga G. N., Buma P., Koot H. W., van der Kraan P. M., van den Berg W. B. Chondrocyte behavior in fibrin glue in vitro. Acta Orthopaedica Scandinavica. 1993;64:441-445.
    [88] Hoemann C. D., Sun J., Legare A., McKee M. D., Buschmann M. D. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartilage. 2005;13:318-329.
    [89] Goddard J. M., Hotchkiss J. H. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32:698-725.
    [90] Plueddemann E. P. Reminiscing on Silane Coupling Agents. J Adhes Sci Technol. 1991;5:261-277.
    [91] Desai S. M., Singh R. P. Surface modification of polyethylene. Long-Term Properties of Polyolefins. 2004;169:231-293.
    [92] Chan C. M., Ko T. M., Hiraoka H. Polymer surface modification by plasmas and photons. Surface Science Reports. 1996;24:3-54.
    [93] Lane J. M., Hourston D. J. Surface Treatments of Polyolefins. Progress in Organic Coatings. 1993;21:269-284.
    [94] Hansen Finn Knut. The Measurement of surface energy of polymer by means of contact angles of liquids on solid surfaces. In: Angle Information on Contact, editor. http://www.ramehart.com/contactangle.htm. University of Oslo
    [95] Bos P. K., DeGroot J., Budde M., Verhaar J. A., van Osch G. J. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum. 2002;46:976-985.
    [96] Chang C., Lauffenburger D. A., Morales T. I. Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. Osteoarthr Cartilage. 2003;11:603-612.
    [97] Theodoropoulos J. S., De Croos J. N., Park S. S., Pilliar R., Kandel R. A. Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res. 2011;469:2785-2795.
    [98] Ng K. W., Wanivenhaus F., Chen T., Hsu H. C., Allon A. A., Abrams V. D., Torzilli P. A., Warren R. F., Maher S. A. A novel macroporous polyvinyl alcohol scaffold promotes chondrocyte migration and interface formation in an in vitro cartilage defect model. Tissue Eng Part A. 2012;18:1273-1281.
    [99] Fisher M. B., Henning E. A., Soegaard N. B., Dodge G. R., Steinberg D. R., Mauck R. L. Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach. Biomaterials. 2014;35:2140-2148.

    下載圖示 校內:2019-08-28公開
    校外:2019-08-28公開
    QR CODE