簡易檢索 / 詳目顯示

研究生: 葉佳玲
Yeh, Chia-Ling
論文名稱: 玉米田之農作活動對周邊國小空氣中微塑顆粒之影響
The influence of agricultural activities on airborne microplastics of schools near corn farms
指導教授: 蘇慧貞
Su, Huey-Jen
共同指導教授: 榮建誠
Jung, Chien-Cheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 微塑顆粒農業懸浮微粒校園
外文關鍵詞: Microplastics, Agricultural activity, PM, Campus
相關次數: 點閱:80下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塑膠具有耐用、低成本和製造技術成熟等特點,因此塑膠產品已被廣泛使用於日常生活中,但其可透過不同途徑降解釋放粒徑小於5 mm的微塑顆粒 (Microplastics, MPs) 到環境中,使得環境中MPs的特性與危害受到關注。雖然過去已有研究調查水體環境中的MPs特性,但2021年聯合國農糧組織的報告卻指出,與水體環境中的MPs相比,土壤受到MPs污染的問題可能更為嚴重,主要是因農作活動 (如作物的塑膠包膜、農業塑膠機械或含MPs的灌溉用水等) 可能會使得MPs透過機械力的破壞進入土壤,當土壤被擾動或風吹揚塵時,將使土壤中MPs傳播至周邊空氣,增加人體透過呼吸吸入MPs的暴露量。然而,目前並無研究探討農作活動是否會影響周邊建築物空氣中的MPs。因此,本研究旨在調查農作活動期間,其對周邊建築物空氣中MPs的影響。
    玉米田屬於土壤含水量低的農田,過去研究已證實玉米田的懸浮微粒排放量最高,我國又有許多國小分布在農田旁,因此本研究以某農業縣市玉米田周邊的國小為採樣對象,並分別於六個農作階段 (作物生長期、採收期、翻土/芝麻栽種期、整地期、播種期和填土期) 以主動採樣方法採集教室的MPs、PM2.5和PM10樣本,其中MPs樣本經前處理後以顯微鏡觀察MPs的型態並定量,再使用拉曼光譜儀分析聚合物組成;PM2.5和PM10濃度比值被用來當作農作活動影響的簡易指標。本研究也收集鄰近的空氣品質監測站之氣象資料,以分析氣象因子對國小空氣中MPs濃度的影響。
    分析結果顯示,MPs的豐度介於2.51-56.81 items/m3之間,其中整地期的MPs豐度 (56.81±7.36 items/m3) 最高,此期間的PM2.5/PM10比值開始下降,最低比值也發生於此期間,其次為翻土/芝麻栽種期 (32.70±6.87 items/m3),而作物生長期的MPs豐度最低 (< 5 items/m3)。整體而言,MPs的形狀以碎片佔多數 (70%),其次是球狀 (16%);顏色以黑色 (32%) 和灰色 (31%) 為主;尺寸主要集中在10-25 µm之間 (45%),其次是25-50 µm (24%) 和2-10 µm (22%)。聚合物組成以聚對苯二甲酸乙二酯 (Polyethylene terephthalate, PET) 為主,推測和農田使用過的廢棄塑膠瓶和農業機械外殼有關。本研究發現氣象因子對MPs豐度的影響不顯著。
    綜合以上結果,本研究發現玉米田周邊空氣中確實存在和農作活動有關的MPs,且其農作活動會影響周邊空氣中MPs豐度的分布,其研究成果可增進我們在農作活動對周邊空氣MPs影響的瞭解,以為未來健康風險評估和介入策略的制定參考。

    Plastic products can degrade into microplastic particles (MPs) (<5 mm), and MPs are widely distributed across the global environment. According to a report from the Food and Agriculture Organization in 2021, terrestrial agricultural soils have a higher abundance of MPs pollution than that in oceans. Agricultural activities, including the use of farming machinery, can disturb the soil, causing soil particles and MPs to become airborne and spread to the surrounding environment. However, the impact of various agricultural activities on airborne MPs, specifically in different cultivaton stages, lacks direct sampling and validation. Therefore, this study aimed to compare the variations in MPs abundance during different farming activities in corn farms at a primary school in Tainan City, Taiwan. Samples were collected in six distinct agricultural stages: crop growing, harvest, plowing/ planting sesame, tilling, sowing, and filling period. Wind direction, speed, and rainfall data were collected from the Environmental Protection Administration's air quality monitoring network to further compare MPs and PM10 pollution levels across different agricultural stages. Considering that PM concentrations are influenced by seasonal factors, the PM2.5/PM10 ratio was calculated, and ANOVA was used to assess differences in PM during various agricultural stages. The results revealed a decline in PM2.5/PM10 ratio starting from the tilling stage, with the lowest ratio observed during the filling stage (0.67±0.11), indicating significant soil disturbance. Throughout all agricultural stages, the presence of MPs was observed, with abundance ranging from 2.51 to 56.81 items/m3. The tilling stage exhibited the highest MPs abundance (56.81±7.36 items/m3), while the crop growing stage had the lowest MPs abundance (< 5 items/m3). Fragment-shaped MPs dominated (70%), with black (32%) and gray (31%) being the prevailing colors. MPs primarily fell within the 10-25 µm size range (45%), followed by 25-50 µm (24%) and 2-10 µm (22%). The polymer composition was mainly polyethylene terephthalate (PET), suggesting potential sources like discarded plastic bottles and agricultural machinery casings. In conclusion, this study demonstrated that agricultural activities related to corn cultivation influence airborne MPs pollution levels in the surrounding environment.

    摘要 I Extended Abstract II 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究背景與現況 1 1.2 目的 3 第二章 文獻回顧 5 2.1 微塑顆粒 (microplastics, MPs) 5 2.1.1 MPs之來源 5 2.1.2 MPs之生成機制 6 2.1.3 MPs之環境流佈 8 2.2 農業與懸浮微粒 10 2.3 農業與MPs 13 2.3.1 農田中MPs之分布 13 2.3.2 農作與MPs 17 2.3.3 農作與周邊空氣中之MPs 19 2.4 MPs之健康效應 22 2.4.1 MPs對呼吸系統的可能危害:機制與生物檢體中的MPs 23 2.4.2 MPs對呼吸系統的危害:觀察性研究/職業場所推論 24 第三章 材料與方法 27 3.1 研究架構 27 3.2 玉米田的選取及其農作活動 28 3.3 採樣學校之選取 32 3.4 調查策略 33 3.5 MPs定期採樣與分析 34 3.5.1 採樣方法與條件 34 3.5.2 MPs樣本前處理 35 3.5.3 MPs分析方法 36 3.5.4 品質控制 37 3.6 即時長期監測 37 3.6.1 PM2.5和PM10 37 3.7 風向與風速 38 3.8 資料分析 38 3.8.1 MPs豐度 38 3.8.2 農作活動對MPs和PM之影響 38 3.8.3 採樣點間之差異 39 3.8.4 主成分分析 39 3.8.5 風花圖 39 第四章 研究結果 40 4.1 MPs豐度 40 4.2 MPs 形狀、尺寸及顏色分布 42 4.3 MPs聚合物組成 46 4.4 不同農作活動階段PM之差異 47 4.5 不同農作活動期間之氣象因子 48 4.5.1 溫度和雨量 48 4.5.2 風速和風向 48 4.6 不同農作活動之溫度和雨量對MPs之影響 49 第五章 討論 52 5.1 玉米田周邊國小空氣中MPs之豐度和分布 52 5.2 玉米田周邊國小空氣中MPs之特徵 55 5.3 農作活動對周邊環境之影響 56 5.4 可能的MPs污染來源 57 5.5 研究限制 57 第六章 結論 57 第七章 參考文獻 59 附錄 77

    Abbasi, S., Jaafarzadeh, N., Zahedi, A., Ravanbakhsh, M., Abbaszadeh, S., & Turner, A. (2023). Microplastics in the atmosphere of Ahvaz City, Iran. Journal of Environmental Sciences, 126, 95-102.
    Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F. J., Dominguez, A. O., & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153-164.
    Agriculture and Agri-Food Canada, A. (2022). Particulate Matter Indicator. https://agriculture.canada.ca/en/agricultural-production/climate-change-and-air-quality/particulate-matter-indicator
    Akhbarizadeh, R., Dobaradaran, S., Torkmahalleh, M. A., Saeedi, R., Aibaghi, R., & Ghasemi, F. F. (2021). Suspended fine particulate matter (PM2. 5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environmental Research, 192, 110339.
    Aldehuela, C. (2021). Plastics in soil threaten food security, health, and environment: FAO. UN News- Global perspective Human stories Retrieved from https://news.un.org/en/story/2021/12/1107342
    Allen, S., Allen, D., Phoenix, V. R., Roux, G. L., Jiménez, P. D., Simonneau, A., Binet, S., & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5), 339-344. https://doi.org/10.1038/s41561-019-0335-5
    Amato-Lourenço, L. F., Dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., & Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? The Science of the total environment, 749, 141676-141676. https://doi.org/10.1016/j.scitotenv.2020.141676
    Andrady, A. L. (2003). Plastics and the Environment. John Wiley & Sons.
    Andrady, A. L. (2017). The plastic in microplastics: A review. Marine pollution bulletin, 119(1), 12-22.
    Antti-Poika, M., Nordman, H., Nickels, J., Keskinen, H., & Viljanen, A. (1986). Lung disease after exposure to polyvinyl chloride dust. Thorax, 41(7), 566-567. https://doi.org/10.1136/thx.41.7.566
    Arslan, S., & Aybek, A. (2012). Particulate Matter Exposure in Agriculture. In H. Budi (Ed.), Air Pollution (pp. Ch. 3). IntechOpen. https://doi.org/10.5772/50084
    Arthur, C., Baker, J., & Bamford, H. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris. National Oceanic and Atmospheric Administration Technical Memorandum NOS-OR&R-30.
    Assossment, G. F. I. f. R. (2019). Microplastics: more research needed. https://www.bfr.bund.de/en/press_information/2019/04/microplastics__more_research_needed-240153.html
    Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. https://doi.org/https://doi.org/10.1016/j.envint.2017.02.013
    Bai, L., He, Z., Li, C., & Chen, Z. (2020). Investigation of yearly indoor/outdoor PM2.5 levels in the perspectives of health impacts and air pollution control: Case study in Changchun, in the northeast of China. Sustainable Cities and Society, 53, 101871. https://doi.org/https://doi.org/10.1016/j.scs.2019.101871
    Berg, P. v. d., Huerta-Lwanga, E., Corradini, F., & Geissen, V. (2020). Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198. https://doi.org/10.1016/j.envpol.2020.114198
    Bergmann, M., MÜTZEL, S., Primpke, S., Tekman, M. B., Trachsel, J., & Gerdts, G. (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science advances, 5(8), eaax1157.
    Bogman, P., Cornelis, W., Rollé, H., & Gabriels, D. (2005). Prediction of TSP and PM10 emissions from agricultural operations in Flanders, Belgium. Proceedings of the 14th International Conference “Transport and Air Pollution”, Graz, Austria,
    Boucher, Friot, J., & Damien. (2017). Primary microplastics in the oceans: a global evaluation of sources (Vol. 10). Iucn Gland, Switzerland.
    Boughattas, I., Hattab, S., Zitouni, N., Mkhinini, M., Missawi, O., Bousserrhine, N., & Banni, M. (2021). Assessing the presence of microplastic particles in Tunisian agriculture soils and their potential toxicity effects using Eisenia andrei as bioindicator. Science of The Total Environment, 796, 148959. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148959
    Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. Science, 368(6496), 1257-1260. https://doi.org/10.1126/science.aaz5819
    Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., & Chen, Q. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environmental Science and Pollution Research, 24, 24928-24935.
    Campanale, C., Massarelli, C., Savino, I., Locaputo, V., & Uricchio, V. F. (2020). A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International Journal of Environmental Research and Public Health, 17(4), 1212. https://doi.org/10.3390/ijerph17041212
    Cao, L., Wu, D., Liu, P., Hu, W., Xu, L., Sun, Y., Wu, Q., Tian, K., Huang, B., Yoon, S. J., Kwon, B.-O., & Khim, J. S. (2021). Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Science of The Total Environment, 794, 148694. https://doi.org/10.1016/j.scitotenv.2021.148694
    Carpenter, E. J., & Smith, K. L., Jr. (1972). Plastics on the Sargasso sea surface. Science, 175(4027), 1240-1241. https://doi.org/10.1126/science.175.4027.1240
    Carvacho, O. F., Ashbaugh, L. L., Brown, M. S., & Flocchini, R. G. (2004). Measurement of PM2. 5 emission potential from soil using the UC Davis resuspension test chamber. Geomorphology, 59(1-4), 75-80.
    Cassel, T., Trzepla-Nabaglo, K., & Flocchini, R. (2003). PM10 emission factors for harvest and tillage of row crops. 12th International Emission Inventory Conference, San Diego, CA,
    Cebeci-Maltaş, D., Ben-Amotz, D., Alam, M. A., Wang, P., & Pinal, R. (2017). Photobleaching profile of Raman peaks and fluorescence background. https://www.europeanpharmaceuticalreview.com/article/70503/raman-peaks-fluorescence-background/#:~:text=The%20fluorescence%20interference%20in%20Raman,which%20requires%20high%2Denergy%20photons.
    Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494-3511. https://doi.org/10.1021/acssuschemeng.9b06635
    Chen, E.-Y., Lin, K.-T., Jung, C.-C., Chang, C.-L., & Chen, C.-Y. (2022). Characteristics and influencing factors of airborne microplastics in nail salons. Science of The Total Environment, 806, 151472. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151472
    Chen, W., Tong, D. Q., Zhang, S., Zhang, X., & Zhao, H. (2017). Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China. Journal of Environmental Sciences, 57, 15-23. https://doi.org/https://doi.org/10.1016/j.jes.2016.02.024
    Chen, Y., Leng, Y., Liu, X., & Wang, J. (2020). Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environmental Pollution, 257, 113449. https://doi.org/10.1016/j.envpol.2019.113449
    Chen, Z., Gao, L., Chen, C., & Butts, C. L. (2017). Analysis on Technology Status and Development of Peanut Harvest Mechanization of China and the United States. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 48, 1-21. https://doi.org/10.6041/j.issn.1000-1298.2017.04.001
    Chia, R. W., Lee, J.-Y., Kim, H., & Jang, J. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19(6), 4211-4224.
    Corcora, P. L. (2020). Degradation of Microplastics in the Environment. In T. Rocha-Santos, M. Costa, & C. Mouneyrac (Eds.), Handbook of Microplastics in the Environment (pp. 1-12). Springer International Publishing. https://doi.org/10.1007/978-3-030-10618-8_10-1
    Cox, K. D., Covernton, G. A., Davie, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human Consumption of Microplastics. Environmental Science & Technology, 53(12), 7068-7074. https://doi.org/10.1021/acs.est.9b01517
    D'Amato, G., & Cecchi, L. (2008). Effects of climate change on environmental factors in respiratory allergic diseases. Clinical & Experimental Allergy, 38(8), 1264-1274.
    Daglen, B. C., & Tyler, D. R. (2010). Photodegradable plastics: End-of-life design principles. Green Chemistry Letters and Reviews, 3, 69-82. https://doi.org/10.1080/17518250903506723
    De Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol, 24(4), 1405-1416. https://doi.org/10.1111/gcb.14020
    Dehghani, S., Moore, F., & Akhbarizadeh, R. (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research, 24, 20360-20371.
    Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7(1), 1-10.
    Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453-458. https://doi.org/https://doi.org/10.1016/j.envpol.2016.12.013
    Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., & Tassin, B. (2015). Microplastic contamination in an urban area: a case study in Greater Paris. Environmental Chemistry, 12(5), 592-599.
    Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine pollution bulletin, 104(1), 290-293. https://doi.org/https://doi.org/10.1016/j.marpolbul.2016.01.006
    Dubaish, F., & Liebezeit, G. (2013). Suspended Microplastics and Black Carbon Particles in the Jade System, Southern North Sea. Water, Air, & Soil Pollution, 224(2), 1352. https://doi.org/10.1007/s11270-012-1352-9
    Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 2. https://doi.org/10.1186/s12302-015-0069-y
    Duwez, A.-S., & Nysten, B. (2001). Mapping aging effects on polymer surfaces: specific detection of additives by chemical force microscopy. Langmuir, 17(26), 8287-8292.
    Edge, M., Hayes, M., Mohammadian, M., Allen, N. S., Jewitt, T. S., Brems, K., & Jones, K. (1991). Aspects of poly(ethylene terephthalate) degradation for archival life and environmental degradation. Polymer Degradation and Stability, 32(2), 131-153. https://doi.org/https://doi.org/10.1016/0141-3910(91)90047-U
    Enterprise, B. P. (2023). PETG:環己二醇(共聚聚酯). https://www.taiwanbottle.com.tw/%E5%A1%91%E8%86%A0%E7%9F%A5%E8%AD%98/%E6%9D%90%E8%B3%AA%E6%94%BB%E7%95%A5%E7%A7%98%E7%AC%88-PETG%E7%AF%87/#:~:text=PETG%E7%9A%84%E4%B8%BB%E8%A6%81%E7%94%A8%E9%80%94%3A,%E5%92%8C%E5%84%AA%E7%95%B0%E7%9A%84%E8%91%97%E8%89%B2%E6%80%A7%E3%80%82
    Eubeler, J. P., Zok, S., Bernhard, M., & Knepper, T. P. (2009). Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. TrAC Trends in Analytical Chemistry, 28(9), 1057-1072.
    EUROPLAS. (2007). 10+ Automotive plastic materials you should know. https://europlas.com.vn/en-US/blog-1/10-automotive-plastic-materials-you-should-know#:~:text=PET,fibers%2C%20films%2C%20and%20foams.
    Feng, S., Lu, H., & Liu, Y. (2021). The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: Different land use and mulching time in facility agriculture. Environmental Pollution, 279, 116939. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116939
    Gallagher, L. G., Li, W., Ray, R. M., Romano, M. E., Wernli, K. J., Gao, D. L., Thomas, D. B., & Checkoway, H. (2015). Occupational exposures and risk of stomach and esophageal cancers: update of a cohort of female textile workers in Shanghai, China. American Journal of Industrial Medicine, 58(3), 267-275. https://doi.org/10.1002/ajim.22412
    Gasperi, J., Wright, S. L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F. J., & Tassin, B. (2018). Microplastics in air: Are we breathing it in? Current Opinion in Environmental Science & Health, 1, 1-5. https://doi.org/https://doi.org/10.1016/j.coesh.2017.10.002
    Gaston, E., Woo, M., Steele, C., Suja Sukumaran, & Anderson, S. (2020). Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. Applied Spectroscopy, 74(9), 1079-1098. https://doi.org/10.1177/0003702820920652
    Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782.
    Goossens, D., & Riksen, M. (2004). Wind Erosion and Dust Dynamics: Observations, Simulations, Modelling. Wageningen University.
    Gregory, M. R. (1977). Plastic pellets on New Zealand beaches. Marine pollution bulletin, 8(4), 82-84. https://doi.org/https://doi.org/10.1016/0025-326X(77)90193-X
    Gregory, M. R. (1978). Accumulation and distribution of virgin plastic granules on New Zealand beaches. New Zealand Journal of Marine and Freshwater Research, 12, 399-414.
    Guo, J.-J., Huang, X.-P., Xiang, L., Wang, Y.-Z., Li, Y.-W., Li, H., Cai, Q.-Y., Mo, C.-H., & Wong, M.-H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137, 105263. https://doi.org/https://doi.org/10.1016/j.envint.2019.105263
    Guo, X., & Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine pollution bulletin, 142, 1-14.
    He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. https://doi.org/https://doi.org/10.1016/j.trac.2018.10.006
    Helmberger, M. S., Tiemann, L. K., & Grieshop, M. J. (2020). Towards an ecology of soil microplastics. Functional Ecology, 34(3), 550-560.
    Henry, B., Laitala, K., & Klepp, I. G. (2019). Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Science of The Total Environment, 652, 483-494. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.10.166
    Hidalgo-Ruz, V., Gutow, L., Thompson∥, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. https://doi.org/10.1021/es2031505
    Hidalgo-Ruz, V., & Thiel, M. (2013). Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Marine Environmental Research, 87-88, 12-18. https://doi.org/10.1016/j.marenvres.2013.02.015
    Holmén, B., Miller, D., Hiscox, A., Yang, W., Wang, J., Sammis, T., & Bottoms, R. (2008). Near-source particulate emissions and plume dynamics from agricultural field operations. Journal of Atmospheric Chemistry, 59, 117-134.
    Hooper, J., & Marx, S. (2018). A global doubling of dust emissions during the Anthropocene? Global and Planetary Change, 169, 70-91.
    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment, 586, 127-141. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.01.190
    Huang, Y., Liu, Q., Jia, W., Yan, C., & Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096. https://doi.org/https://doi.org/10.1016/j.envpol.2020.114096
    Isobe, A., Azuma, T., Cordova, M., Cózar, A., Galgani, F., Hagita, R., Kanhai, L., Imai, K., Iwasaki, S., Kako, S., Kozlovskii, N., Lusher, A., Mason, S. A., Michida, Y., Mituhasi, T., Morii, Y., Mukai, T., Popova, A., Shimizu, K., . . . Zhang, W. (2021). A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes. Microplastics and Nanoplastics, 1(1), 16. https://doi.org/10.1186/s43591-021-00013-z
    Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Marine pollution. Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. https://doi.org/10.1126/science.1260352
    Jenner, L. C., Rotchell, J. M., Bennett, R. T., Cowen, M., Tentzeris, V., & Sadofsky, L. R. (2022). Detection of microplastics in human lung tissue using μFTIR spectroscopy. Science of The Total Environment, 831, 154907. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.154907
    Jiang, C., Yin, L., Wen, X., Du, C., Wu, L., Long, Y., Liu, Y., Ma, Y., Yin, Q., Zhou, Z., & Pan, H. (2018). Microplastics in Sediment and Surface Water of West Dongting Lake and South Dongting Lake: Abundance, Source and Composition. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102164
    Kalogerakis, N., Karkanorachaki, K., Kalogerakis, G. C., Triantafyllidi, E. I., Gotsis, A. D., Partsinevelos, P., & Fava, F. (2017). Microplastics Generation: Onset of Fragmentation of Polyethylene Films in Marine Environment Mesocosms [Original Research]. Frontiers in Marine Science, 4. https://doi.org/10.3389/fmars.2017.00084
    Kasumba, J., Holmén, B. A., Hiscox, A., Wang, J., & Miller, D. (2011). Agricultural PM10 emissions from cotton field disking in Las Cruces, NM. Atmospheric Environment, 45(9), 1668-1674.
    Katsumi, N., Kusube, T., Nagao, S., & Okochi, H. (2021). Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere, 267, 129185. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.129185
    Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M. G. J., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research, 120, 1-8. https://doi.org/https://doi.org/10.1016/j.marenvres.2016.07.004
    Klein, M., & Fischer, E. K. (2019). Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Science of The Total Environment, 685, 96-103. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.05.405
    Klein, S., Dimzon, I. K., Eubeler, J., & Knepper, T. P. (2018a). Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. In M. Wagner & S. Lambert (Eds.), Freshwater Microplastics : Emerging Environmental Contaminants? (pp. 51-67). Springer International Publishing. https://doi.org/10.1007/978-3-319-61615-5_3
    Kooi, M., Besseling, E., Kroeze, C., Wezel, A. P. v., & Koelmans, A. A. (2018). Modeling the Fate and Transport of Plastic Debris in Freshwaters: Review and Guidance. In M. Wagner & S. Lambert (Eds.), Freshwater Microplastics : Emerging Environmental Contaminants? (pp. 125-152). Springer International Publishing. https://doi.org/10.1007/978-3-319-61615-5_7
    Laskar, N., & Kumar, U. (2019). Plastics and microplastics: A threat to environment. Environmental technology & innovation, 14, 100352.
    Leslie, H. A., Velzen, M. J. M. v., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163, 107199. https://doi.org/https://doi.org/10.1016/j.envint.2022.107199
    Li, H., Tatarko, J., Kucharski, M., & Dong, Z. (2015). PM2.5 and PM10 emissions from agricultural soils by wind erosion. Aeolian Research, 19, 171-182. https://doi.org/https://doi.org/10.1016/j.aeolia.2015.02.003
    Li, J., Peng, D., Ouyang, Z., Liu, P., Fang, L., & Guo, X. (2022). Occurrence status of microplastics in main agricultural areas of Xinjiang Uygur Autonomous Region, China. Science of The Total Environment, 828, 154259. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.154259
    Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177-184. https://doi.org/https://doi.org/10.1016/j.envpol.2016.04.012
    Li, J., Song, Y., & Cai, Y. (2020). Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environmental Pollution, 257, 113570. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113570
    Li, Q., Wu, J., Zhao, X., Gu, X., & Ji, R. (2019). Separation and identification of microplastics from soil and sewage sludge. Environmental Pollution, 254, 113076.
    Li, R., Chen, W., Xiu, A., Zhao, H., Zhang, X., Zhang, S., & Tong, D. Q. (2019). A comprehensive inventory of agricultural atmospheric particulate matters (PM10 and PM2.5) and gaseous pollutants (VOCs, SO2, NH3, CO, NOx and HC) emissions in China. Ecological Indicators, 107, 105609. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.105609
    Li, W., Wang, S., Wufuer, R., Duo, J., & Pan, X. (2023). Distinct soil microplastic distributions under various farmland-use types around Urumqi, China. Science of The Total Environment, 857, 159573. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159573
    Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G., & Zeng, E. Y. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water research, 142, 75-85.
    Li, Y., Shao, L., Wang, W., Zhang, M., Feng, X., Li, W., & Zhang, D. (2020). Airborne fiber particles: types, size and concentration observed in Beijing. Science of The Total Environment, 705, 135967.
    Liao, Z., Ji, X., Ma, Y., Lv, B., Huang, W., Zhu, X., Fang, M., Wang, Q., Wang, X., Dahlgren, R., & Shang, X. (2021). Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. Journal of Hazardous Materials, 417, 126007. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126007
    Lin, J., Zhou, X., & Wang, Q. (2023a). Effects of Agricultural Machinery Operations on PM2.5, PM10 and TSP in Farmland under Different Tillage Patterns. Agriculture, 13(5), 930. https://www.mdpi.com/2077-0472/13/5/930
    Lin, X., Niu, J., Yu, X., Berndtsson, R., Wu, S., & Xie, S. (2021). Maize residue effects on PM2.5, PM10, and dust emission from agricultural land. Soil and Tillage Research, 205, 104738.
    Liu, C., Li, J., Zhang, Y., Wang, L., Deng, J., Gao, Y., Yu, L., Zhang, J., & Sun, H. (2019). Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environment International, 128, 116-124. https://doi.org/https://doi.org/10.1016/j.envint.2019.04.024
    Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., & Li, D. (2019). Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Science of The Total Environment, 675, 462-471. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.110
    Lv, Y., Wang, H., Wei, S., Zhang, L., & Zhao, Q. (2017). The Correlation between Indoor and Outdoor Particulate Matter of Different Building Types in Daqing, China. Procedia Engineering, 205, 360-367. https://doi.org/https://doi.org/10.1016/j.proeng.2017.10.002
    Möller, J. N., Löder, M. G. J., & Laforsch, C. (2020). Finding microplastics in soils: a review of analytical methods. Environmental Science & Technology, 54(4), 2078-2090.
    Machado, A. A. d. S., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405-1416. https://doi.org/10.1111/gcb.14020
    Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, I., Officer, R., Nash, R., & Morrison, L. (2017). Microplastics in sewage sludge: Effects of treatment. Environmental Science & Technology, 51(2), 810-818.
    Marsh, J. P., Mossman, B. T., Driscoll, K. E., Schins, R. F., & Borm, P. J. A. (1994). Effects of Aramid, a high strength synthetic fiber, on respiratory cells in vitro. Drug and Chemical Toxicology, 17(2), 75-92. https://doi.org/10.3109/01480549409014303
    Mastrangelo, G., Fedeli, U., Fadda, E., Milan, G., & Lange, J. H. (2002). Epidemiologic evidence of cancer risk in textile industry workers: a review and update. Toxicology and Industrial Health, 18(4), 171-181. https://doi.org/10.1191/0748233702th139rr
    Masura, J., Baker, J., Foster, G., & Arthur, C. (2015). Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum
    McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., & Kelly, J. J. (2014). Microplastic is an Abundant and Distinct Microbial Habitat in an Urban River. Environmental Science & Technology, 48(20), 11863-11871. https://doi.org/10.1021/es503610r
    Meng, F., Fan, T., Yang, X., Riksen, M., Xu, M., & Geissen, V. (2020). Effects of plastic mulching on the accumulation and distribution of macro and micro plastics in soils of two farming systems in Northwest China. Peer J, 8, e10375.
    Nations, F. a. A. O. o. t. U. (2021). Assessment of Agricultural Plastics and Their Sustainability—A Call for Action.
    Ng, T. P., Lee, H. S., Low, Y. M., Phoon, W. H., & Ng, Y. L. (1991). Pulmonary effects of polyvinyl chloride dust exposure on compounding workers. Scandinavian Journal of Work, Environment & Health, 17(1), 53-59. https://doi.org/10.5271/sjweh.1734
    Nizzetto, L., Futter, M., & Langaas, S. (2016). Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science & Technology, 50(20), 10777-10779. https://doi.org/10.1021/acs.est.6b04140
    O'Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W.-M., & Hou, D. (2019). Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 249, 527-534. https://doi.org/10.1016/j.envpol.2019.03.092
    OECD. (2022). Plastic pollution is growing relentlessly as waste management and recycling fall short, says OECD. https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm
    Pauly, J. L., Stegmeier, S. J., Allaart, H. A., Cheney, R. T., Zhang, P. J., Mayer, A. G., & Streck, R. J. (1998). Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiology, Biomarkers & Prevention, 419–428.
    Perera, K., Ziajahromi, S., Nash, S. B., Manage, P. M., & Leusch, F. D. L. (2022). Airborne Microplastics in Indoor and Outdoor Environments of a Developing Country in South Asia: Abundance, Distribution, Morphology, and Possible Sources. Environmental Science & Technology, 56(23), 16676-16685. https://doi.org/10.1021/acs.est.2c05885
    PÉTERFALVI, N., KELLER, B., & MAGYAR, M. (2018). PM10 emission from crop production and agricultural soils. AGROCHEMISTRY AND SOIL SCIENCE. http://real.mtak.hu/80884/1/0088.2018.67.1.10.pdf
    Petersen, F., & Hubbar, J. A. (2021). The occurrence and transport of microplastics: The state of the science. Science of The Total Environment, 758, 143936.
    PlasticsEurope. (2019). An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019
    PlasticsEurope. (2022). Plastics – the Facts 2022. https://plasticseurope.org/wp-content/uploads/2022/10/PE-PLASTICS-THE-FACTS_V7-Tue_19-10-1.pdf
    Polin, J. P., Gu, Z., Humburg, D., & Dalsted, K. (2013). Sunflower dust properties that contribute to increased fire risk during harvest and biorefinery operations. Industrial Crops and Products, 50, 227-231.
    Polin, J. P., Gu, Z., Humburg, D. S., & Dalsted, K. J. (2014). Source of airborne sunflower dust generated during combine harvester operation. Biosystems engineering, 126, 23-29.
    Prata, J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115-126. https://doi.org/https://doi.org/10.1016/j.envpol.2017.11.043
    Prata, J. C., Castro, J. L., Costa, J. P. d., Duarte, A. C., Rocha-Santos, T., & Cerqueira, M. (2020). The importance of contamination control in airborne fibers and microplastic sampling: Experiences from indoor and outdoor air sampling in Aveiro, Portugal. Marine pollution bulletin, 159, 111522.
    Prata, J. C., Costa, J. P. d., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of The Total Environment, 702, 134455.
    Punyauppa-path, S., & Punyauppa-path, P. (2019). Microplastics: Origin, Environmental impact, Food and Beverage contamination and Management methods. Science and Technology. file:///C:/Users/user/Downloads/2571-13-11477-3-10-20200612%20(1).pdf
    Pye, K. (2015). Aeolian dust and dust deposits.
    Qi, R., Jones, D. L., Li, Z., Liu, Q., & Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of The Total Environment, 703, 134722.
    Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D'Amore, E., Rinaldo, D., Matta, M., & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, 106274.
    Ramos, L., Berenstein, G., Hughes, E. A., Zalts, A., & Montserrat, J. M. (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of The Total Environment, 523, 74-81. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.03.142
    RapidDirect. (2022). Types of Plastics Used in the Automotive Industry. https://www.rapiddirect.com/blog/types-of-automotive-plastics/#:~:text=Door%20handles-,Polyethylene%20terephthalate%20(PET),not%20produce%20odors%20or%20fumes.
    Rezaei, M., Riksen, M. J. P. M., Sirjani, E., Sameni, A., & Geissen, V. (2019). Wind erosion as a driver for transport of light density microplastics. Science of The Total Environment, 669, 273-281. https://doi.org/10.1016/j.scitotenv.2019.02.382
    Rezania, S., Park, J., Din, M. F. M., Taib, S. M., Talaiekhozani, A., Yadav, K. K., & Kamyab, H. (2018). Microplastics pollution in different aquatic environments and biota: A review of recent studies. Marine pollution bulletin, 133, 191–208. https://doi.org/10.1016/j.marpolbul.2018.05.022
    Rillig, M. C. (2012). Microplastic in Terrestrial Ecosystems and the Soil? Environmental Science & Technology, 46(12), 6453-6454. https://doi.org/10.1021/es302011r
    Rillig, M. C., Ingraffia, R., & Machado, A. A. d. S. (2017). Microplastic Incorporation into Soil in Agroecosystems. Frontiers in plant science, 8, 1805-1805. https://doi.org/10.3389/fpls.2017.01805
    Rochman, C. M. (2018). Microplastics research—from sink to source. Science, 360(6384), 28-29.
    Saadu, I., & Farsang, A. (2022). Greenhouse farming as a source of macroplastic and microplastics contamination in agricultural soils: a case study from Southeast-Hungary. Agrokémia és Talajtan.
    Samandra, S., Johnston, J. M., Jaeger, J. E., Symons, B., Xie, S., Currell, M., Ellis, A. V., & Clarke, B. O. (2022). Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Science of The Total Environment, 802, 149727. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.149727
    Sarathana, D., & Winijkul, E. (2023). Concentrations of Airborne Microplastics during the Dry Season at Five Locations in Bangkok Metropolitan Region, Thailand. Atmosphere, 14(1).
    Sarkar, D. J., Sarkar, S. D., Manna, R. K., & Samanta, S. (2020). Microplastics pollution: An emerging threat to freshwater aquatic ecosystem of India. Journal of the Inland Fisheries Society of India, 52, 05-15. https://doi.org/10.47780/jifsi.52.1.2020.106513
    Schothorst, B. v., Beriot, N., Lwanga, E. H., & Geissen, V. (2021). Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments, 8(4). https://doi.org/10.3390/environments8040036
    Sharratt, B., & Auvermann, B. (2014). Dust pollution from agriculture. In Encyclopedia of agriculture and food systems (Vol. 2, pp. 487-504). MA, Elsevier Academic Press Cambridge.
    Shen, M., Xiong, W., Song, B., Zhou, C., Almatrafi, E., Zeng, G., & Zhang, Y. (2022). Microplastics in landfill and leachate: Occurrence, environmental behavior and removal strategies. Chemosphere, 135325.
    Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental Science & Technology, 51(8), 4368-4376.
    StatistaResearch. (2023). Plastic production forecast worldwide 2025-2050. https://www.statista.com/statistics/664906/plastics-production-volume-forecast-worldwide/#:~:text=Plastic%20production%20forecast%20worldwide%202025%2D2050&text=Annual%20production%20volumes%20are%20expected,30%20percent%20compared%20with%202025.
    Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of The Total Environment, 550, 690-705. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.01.153
    Studnicka, M. J., Menzinger, G., Drlicek, M., Maruna, H., & Neumann, M. G. (1995). Pneumoconiosis and systemic sclerosis following 10 years of exposure to polyvinyl chloride dust. Thorax, 50(5), 583-585; discussion 589. https://doi.org/10.1136/thx.50.5.583
    Trainic, M., Flores, J. M., Pinkas, I., Pedrotti, M. L., Lombard, F., Bourdin, G., Gorsky, G., Boss, E., Rudich, Y., Vardi, A., & Koren, I. (2020). Airborne microplastic particles detected in the remote marine atmosphere. Communications Earth & Environment, 1(1), 64. https://doi.org/10.1038/s43247-020-00061-y
    Trenkel, M. E. (2010). Slow and controlled-release and stabilized fertilizers, International Fertilizer Industry Association (IFA). Nutrient Efficiency in Agriculture, 5(6).
    Turner, A., & Holmes, L. (2011). Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean). Marine pollution bulletin, 62(2), 377-381. https://doi.org/10.1016/j.marpolbul.2010.09.027
    Vallero, D. A. (1994). Fundamentals of Air Pollution (Vol. 4). https://booksite.elsevier.com/samplechapters/9780123736154/Sample_Chapters/01~Front_Matter.pdf
    Verla, A. W., Enyoh, C. E., Verla, E. N., & Nwarnorh, K. O. (2019). Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Applied Sciences, 1(11), 1400. https://doi.org/10.1007/s42452-019-1352-0
    Vethaak, A. D., & Legler, J. (2021). Microplastics and human health. Science, 371(6530), 672-674.
    Vethaak, A. D., & Leslie, H. A. (2016). Plastic Debris Is a Human Health Issue. Environmental Science & Technology, 50(13), 6825-6826. https://doi.org/10.1021/acs.est.6b02569
    Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G., & Zhang, P. (2019). Microplastics as contaminants in the soil environment: A mini-review. Science of The Total Environment, 691, 848-857.
    Wang, J., Miller, D. R., Sammis, T. W., Hiscox, A. L., Yang, W., & Britt A. Holmén. (2010). Local dust emission factors for agricultural tilling operations. Soil science, 175(4), 194-200.
    Wang, S., Chen, H., Zhou, X., Tian, Y., Lin, C., Wang, W., Zhou, K., Zhang, Y., & Lin, H. (2020). Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environmental Pollution, 264, 114125. https://doi.org/https://doi.org/10.1016/j.envpol.2020.114125
    Wen, B., Zhang, N., Jin, S.-R., Chen, Z.-Z., Gao, J.-Z., Liu, Y., Liu, H.-P., & Xu, Z. (2018). Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid. Aquatic toxicology, 195, 67-76.
    Wright, S. L., Ulke, J., Font, A., Chan, K. L. A., & Kelly, F. J. (2020). Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environment International, 136, 105411.
    Xi, B., Wang, B., Chen, M., Lee, X., Zhang, X., Wang, S., Yu, Z., & Wu, P. (2022). Environmental behaviors and degradation methods of microplastics in different environmental media. Chemosphere, 134354.
    Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P. C., Tang, C., Gan, J., & Xu, J. (2020). Microplastics in the soil environment: occurrence, risks, interactions and fate–a review. Critical Reviews in Environmental Science and Technology, 50(21), 2175-2222.
    Xu, G., Yang, L., Xu, L., & Yang, J. (2022). Soil microplastic pollution under different land uses in tropics, southwestern China. Chemosphere, 289, 133176.
    Yamashita, R., & Tanimura, A. (2007). Floating plastic in the Kuroshio Current area, western North Pacific Ocean. Marine pollution bulletin, 54(4), 485-488. https://doi.org/10.1016/j.marpolbul.2006.11.012
    Yan, C. Z., Zhou, Y. M., Song, X., & Hanchen, D. (2009). Estimation of areas of sand and dust emission in the Hexi Corridor from a land cover database: an approach that combines remote sensing with GIS. Environmental geology, 57, 707-713.
    Yang, J., Li, R., Zhou, Q., Li, L., Li, Y., Tu, C., Zhao, X., Xiong, K., Christie, P., & Luo, Y. (2021). Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environmental Pollution, 272, 116028. https://doi.org/10.1016/j.envpol.2020.116028
    Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. (2021). Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of The Total Environment, 780, 146546.
    Yang, M. (2011). Analysis on situation of agricultural mechanization development in the next five years. Chinese Agricultural Mechanization, 1, 9-14.
    Yu, H., Zhang, Y., Tan, W., & Zhang, Z. (2022). Microplastics as an Emerging Environmental Pollutant in Agricultural Soils: Effects on Ecosystems and Human Health [Review]. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.855292
    Yu, H., Zhang, Z., Zhang, Y., Song, Q., Fan, P., Xi, B., & Tan, W. (2021). Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil. Environmental Pollution, 288, 117733.
    Yu, Z.-f., Song, S., Xu, X.-l., Ma, Q., & Lu, Y. (2021). Sources, migration, accumulation and influence of microplastics in terrestrial plant communities. Environmental and Experimental Botany, 192, 104635.
    Yuan, Z., Pei, C., Li, H., Lin, L., Liu, S., Hou, R., Liao, R., & Xu, X. (2023). Atmospheric microplastics at a southern China metropolis: Occurrence, deposition flux, exposure risk and washout effect of rainfall. Science of The Total Environment, 869, 161839. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161839
    Yurtsever, M. (2019). Glitters as a source of primary microplastics: an approach to environmental responsibility and ethics. Journal of Agricultural and Environmental Ethics, 32(3), 459-478.
    Yurtsever, M., Kaya, A. T., & Bayraktar, S. Ç. (2018). A Research on Microplastic Presence in Outdoor Air. In (pp. 89-97). https://doi.org/10.1007/978-3-319-71279-6_13
    Zhang, B., Yang, X., Chen, L., Chao, J., Teng, J., & Wang, Q. (2020). Microplastics in soils: A review of possible sources, analytical methods, and ecological impacts. Journal of Chemical Technology & Biotechnology, 95. https://doi.org/10.1002/jctb.6334
    Zhang, G., Li, J., Li, X.-D., Xu, Y., Guo, L.-L., Tang, J.-H., Lee, C. S. L., Liu, X., & Chen, Y.-J. (2010). Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. Environmental Pollution, 158(11), 3392-3400.
    Zhang, J., Wang, X., Xue, W., Xu, L., Ding, W., Zhao, M., Liu, S., Zou, G., & Chen, Y. (2022). Microplastics pollution in soil increases dramatically with long-term application of organic composts in a wheat–maize rotation. Journal of Cleaner Production, 356, 131889. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131889
    Zhang, L., Xie, Y., Liu, J., Zhong, S., Qian, Y., & Gao, P. (2020). An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science & Technology, 54(7), 4248-4255.
    Zhang, M., Zhao, Y., Qin, X., Jia, W., Chai, L., Huang, M., & Huang, Y. (2019). Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Science of The Total Environment, 688, 470-478.
    Zhang, S., Yang, X., Gertsen, H., Peters, P., Salánki, T., & Geissen, V. (2018). A simple method for the extraction and identification of light density microplastics from soil. Science of The Total Environment, 616, 1056-1065.
    Zhang, Y.-x., Shao, M., Zhang, Y.-h., Zeng, L.-m., He, L.-y., Zhu, B., Wei, Y.-j., & Zhu, X.-l. (2007). Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences, 19(2), 167-175.
    Zhao, C.-X., Wang, Y.-Q., Wang, Y.-J., Zhang, H.-L., & Zhao, B.-Q. (2014). Spatial and temporal distribution of PM 2.5 and PM 10 pollution levels in Beijing in winter and spring and their relationship with meteorological conditions. Environmental Science & Technology, 35, 418-427.
    Zhu, F., Zhu, C., Wang, C., & Gu, C. (2019). Occurrence and ecological impacts of microplastics in soil systems: a review. Bulletin of environmental contamination and toxicology, 102, 741-749.
    Zuskin, E., Mustajbegovic, J., Schachter, E. N., Kern, J., Budak, A., & Godnic-Cvar, J. (1998). Respiratory findings in synthetic textile workers. Am J Ind Med, 33(3), 263-273. https://doi.org/10.1002/(sici)1097-0274(199803)33:3<263::aid-ajim8>3.0.co;2-x
    行政院. (2023). 農業經營現況. https://www.ey.gov.tw/state/CD050F4E4007084B/0ededcaf-8d80-428e-96b7-7c24feb4ea0d#:~:text=%E8%BE%B2%E5%9C%B0%E5%88%A9%E7%94%A8,%E5%85%AC%E9%A0%83%EF%BC%8C%E7%89%A7%E8%8D%891.3%E8%90%AC%E5%85%AC%E9%A0%83%E3%80%82
    行政院環保署. (2023). 近兩年小時值查詢. https://airtw.epa.gov.tw/CHT/Query/InsValue.aspx
    行政院環境保護署廢管處. (2017). 環保署公告訂定「限制含塑膠微粒之化粧品與個人清潔用品製造、輸入及販賣」. https://enews.epa.gov.tw/page/3b3c62c78849f32f/d4a64816-c7c7-4794-8918-060c8fad24f7#:~:text=%E6%96%B0%E8%81%9E%E7%99%BC%E5%B8%83-,%E7%92%B0%E4%BF%9D%E7%BD%B2%E5%85%AC%E5%91%8A%E8%A8%82%E5%AE%9A%E3%80%8C%E9%99%90%E5%88%B6%E5%90%AB%E5%A1%91%E8%86%A0%E5%BE%AE%E7%B2%92%E4%B9%8B,%E7%94%A8%E5%93%81%E8%A3%BD%E9%80%A0%E3%80%81%E8%BC%B8%E5%85%A5%E5%8F%8A%E8%B2%A9%E8%B3%A3%E3%80%8D&text=%E5%BB%A2%E7%AE%A1%E8%99%95%5D-,%E7%92%B0%E4%BF%9D%E7%BD%B2%E5%85%AC%E5%91%8A%E8%A8%82%E5%AE%9A%E3%80%8C%E9%99%90%E5%88%B6%E5%90%AB%E5%A1%91%E8%86%A0%E5%BE%AE%E7%B2%92%E4%B9%8B,%E5%8C%96%E7%B2%A7%E5%93%81%E5%8F%8A%E5%80%8B%E4%BA%BA%E6%B8%85%E6%BD%94%E7%94%A8%E5%93%81%E3%80%82
    建築物設計風力專家系統. (2009). 蒲氏風力級數. http://windexpert.ce.tku.edu.tw/newcode/windtable.php
    游添榮. (2016). 活化休耕地〜硬質玉米栽培技術.
    農業部. (2022). 硬質玉米. https://kmweb.coa.gov.tw/theme_data.php?theme=production_map&id=124
    農業部種苗改良繁殖場. (2019). 硬質玉米新品種台農七號 生長勢強產量高. https://www.tss.gov.tw/theme_data.php?theme=news&sub_theme=news&id=6009#:~:text=%E7%A1%AC%E8%B3%AA%E7%8E%89%E7%B1%B3%E6%88%90%E7%86%9F%E6%99%82%EF%BC%8C%E6%A4%8D%E6%A0%AA,%E7%82%BA%E5%8F%B0%E5%8D%97%E3%80%81%E5%98%89%E7%BE%A9%E7%AD%89%E5%9C%B0%E5%8D%80%E3%80%82

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE