簡易檢索 / 詳目顯示

研究生: 蔡秉訓
Tsai, Ping-Hsun
論文名稱: 特殊合金抽線眼模之最佳化設計
Optimal Design of Wire Drawing Die for Special Alloy
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 最佳化模具設計有限元素分析上界限法抽線製程耐熱合金鋼
外文關鍵詞: optimal die design, heat resistant steel, upper bound method, finite element analysis, wire drawing process
相關次數: 點閱:215下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抽製為常被用於棒材、線材或管材等的斷面縮減製程。當針對特殊合金抽製時,傳統錐形模可能因負荷過大,造成模具失效或胚料破裂等缺陷。本文以耐熱合金鋼SUH35抽線製程為探討對象,以Bezier曲線為模具曲線方程式,並配合上界限法,由總消耗功率最小化決定模具曲線以得到眼模最佳化的幾何設計。同時藉由有限元素套裝軟體DEFORM-3D進行細部模擬分析,以獲得成形負荷、胚料之等效應力及殘留應力、眼模應力及溫度分佈等,並進一步探討摩擦係數、成形速度以及製程溫度對於抽線負荷的影響,並討論臨界成形斷面縮減率下使用最佳化曲線模的優點。
    從上界限法計算可得知曲線模之消耗功率較錐形模為小。以有限元素法模擬最佳化曲線模與錐形模之抽製,從所獲得之負荷、胚料等效應力、胚料殘留應力模具溫度與模具應力,顯示出本文所設計之最佳化曲線模有較佳之性能。

    Drawing process is usually used in the area reduction of bars, wires and tubes. While the drawing process is used for special alloy, the die or the billet are susceptible to failure because the conventional conical die might undergo high drawing load. The wire drawing of the heat resistant steel SUH35 is investigated in this thesis. Bezier curve is used for die profile design and analyzed by upper bound method (UB). According to minimum power dissipation, the optimal design of die profile is obtained. Through the FEM analysis with commercial package of DEFORM-3D, the forming load, effective stress, residual stress, the distribution of stress and temperature on the wire drawing die were attained. Furthermore, the drawing load influenced by the constant shear friction factor, forming speed, and temperature during the process are studied. In addition, the advantage of using optimal curved dies at the critical area reduction is discussed.
    The power dissipation of optimal curve die calculated from the upper bound method is smaller than that of conical die in the same process condition. Using FEM simulation for wire drawing with optimal curved die and conical die, the drawing load, effective stress of the billet, residual stress of the billet, die temperature and die stress were obtained. It showed that the optimal curved dies designed in the thesis have better performance than conical dies for various area reductions.

    總目錄 頁 次 中文摘要................................................................................................ Ⅰ 英文摘要................................................................................................. Ⅱ 誌謝......................................................................................................... Ⅲ 總目錄..................................................................................................... Ⅳ 表目錄..................................................................................................... Ⅷ 圖目錄…................................................................................................. Ⅹ 符號說明................................................................................................. ⅩⅣ 第一章 前言......................................... 1 1-1 緒論..................................... 1 1-2 文獻回顧..................................... 2 1-3 抽線製程分析法.................................. 6 1-4 本文研究範疇.................................... 8 第二章 抽線眼模設計.................................... . 11 2-1 傳統錐形模與最佳化曲線模之比較............... . 11 2-2 曲線模設計之數學模式與分析方法............... . 12 2-2-1 Bezier曲線及其數學形式.................................. 13 2-2-2 一般化動可容速度場之推導............... . 15 2-2-3 上界限方程式之推導............... ........ 21 2-3 最佳化方法................................... 23 第三章 電腦輔助分析.................................... 28 3-1 有限元素法(FEM)於塑性加工之應用.............. 28 3-2 塑性成形之FEM力學模式分析................... 30 3-3 DEFORM軟體簡介................................. 33 第四章 實驗與模擬條件之規劃........................ 36 4-1 實驗之目的..................................... 36 4-1-1 圓柱壓縮試驗之條件規劃........................ 37 4-1-2 圓環壓縮試驗之目的與條件規劃.................. 38 4-1-2-1 試驗設備........................ 38 4-1-2-2 潤滑劑評估....................... 39 4-1-2-3 實驗條件規劃....................... 39 4-2 實驗結果........................................ 41 4-2-1 SUH35之塑流應力曲線與平均降伏應力............. 41 4-2-2 各潤滑條件下的定剪摩擦因子.................... 43 4-3 有限元素模擬規劃....................... 47 4-3-1 CAD模具與胚料幾何建模........................ 47 4-3-2 模擬物件之位置配置........................ 49 4-4 模擬之假設模式............................. 51 4-5 模擬之製程條件規劃............................. 53 4-6 收斂性分析............................. 55 第五章 結果與討論........................... 56 5-1 抽線眼模模具與功率消耗關係....................... 56 5-2 錐形模與曲線模之抽線負荷比較..................... 62 5-3 胚料等效應力與胚料殘留應力之比較................. 68 5-4 錐形模與曲線模的模具應力......................... 71 5-5 錐形模與曲線模之模具溫度比較..................... 77 5-6 定剪摩擦因子、工作溫度與抽線速度對製程的影響.. 79 5-6-1 定剪摩擦因子與工作溫度對製程的影響..............79 5-6-2 抽線速度對製程的影響........................ 81 5-7 模具類型對胚料臨界破壞之影響.................... 83 第六章 結論與建議........................... 86 6-1 結論........................ 86 6-2 建議............................... 88 參考文獻................................................ 89 附錄一....................................................... 93 附錄二.................................................. 94 附錄三........................................................ 95 自述.................................................... 111

    參考文獻
    1. ASM Handbook, Metallography and Microstructures, vol. 9, 1995, pp. 279-281
    2. Blazynski. T.Z., R.S. Lee, “Pass design and redundant strains in forward tube extrusion,” J. Mech. Working Tech., 9 (1984), 313-324
    3. Box, M.J., “A new method of constrained optimization and comparison with other methods,” Computer J., 8 (1965), 42-52
    4. C. H. Han, D. Y. Yang, “A New Formulation for Three-Dimensional Extrusion and Its Application to Extrusion of Clover Sections”, Int. J. Mech. Sci. Vol.28, No. 4, 1986, pp.201-218
    5. Chen, C.T., F.F. Ling, “Upper-bound solution to axisymmetric extrusion problems,” Int. J. Mech. Sci., (1968), 863-879
    6. Chin, R.K., P.S. Steif, “A Computational study of strain inhomogeneity in wire drawing,” Int. J. Mach. Tools Manuf., 35 No.8 (1995), 1087-1098
    7. DEFORM System User Manual, Scientific Forming Technologies Corporation, Apr. 1, 1995
    8. Fletcher, R. and C.M. Reeves, “Function minimization by conjugate gradients,” Computer J., 7 No.2 (1964) 149-154
    9. Himmelblau, “Applied nonlinear programming,” McGraw-Hill, New York, pp.148-157, 1972.
    10. Kim, T.H., B.M. Kim and J.C. Choi, Prediciton of Die Wear in The Wire-Drawing Process, J. of Materials Processing Technology, Vol.65, (1997), 11-17
    11. Kobayashi, S., Oh, S. I. And Altan, T., “Metal forming and the finite-element method” Oxford University Press, New York, 1998
    12. Kumar, S., S.K. Prasad, ”Feature-based design of extrusion process using upper-bound and finite element techniques for extrudable shapes,” J. Mat. Proc. Tech., 155-156 (2004), 1365-1372
    13. Kwan, C.T., “A generalized velocity field for axisymmetric tube drawing through an arbitrarily curved die with an arbitrarily curved plug,” J. Mat. Proc. Tech., 122 (2002), 213-219
    14. Lee, R.S., H.C. Shaw, “Analysis of tube extrusion using upper bound elemental technique,” J. Chi. Soc. Mech. Eng., 7 No.6 (1986), 463-472
    15. Lee, R.S., J.J. Sheu, Y.J. Gau, “Optimum die-surface design of gear-spline extrusions using general surface model,” J. Mat. Proc. Tech., 28 (1991) 365-382
    16. Lo, S.W., Y.H. Lu, “Wire drawing dies with prescribed variations of strain rate,” J. Mat. Proc. Tech., 123 (2002), 212-218
    17. Mathews, J. H., 1987, “Numerical Methods”, Prentice-Hall, pp.295-302
    18. Powell, M.J.D., “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” Computer J., 7 No.4 (1964), 303-307
    19. Reddy, J. N., “An Introduction to The Finite Element Method”, McGraw-Hill, New York, pp.421-429, 1993
    20. Rubio, Alvir, E.M., M.A. Sebastinan Perez, A. Sanz Lobera, “Mechanical solutions for drawing processes under plane strain conditions by the upper bound method,” J. Mat. Proc. Tech., 143-144 (2003), 539-545
    21. Rubio, E.M., R. Domingo, J.M. Arenas, C. Gonzalez, “Energetic analysis of the drawing process by upper-bound techniques,” J. Mat. Proc. Tech., 155-156 (2004), 1220-1226
    22. Sheu, J.J., R.S. Lee, “A numerical model for simulation temperature and speed effects in hot extrusion of rod,” Int. J. Mech. Sci., 33 No.12, (1991), 985-998
    23. Sheu, J.J., R.S. Lee, “Optimum die surface design of general three-dimensional section extrusion by using a surface model with tension parameter,” Int. J. Tools Manuf., 31 No.4 (1991), 521-537
    24. Um, K.K., D.N. Lee, “An upper bound of tube drawing,“ J. Mat. Proc. Tech., 63 (1997), 43-48
    25. Vanderplaats, G.N., “Numerical Optimization Techniques for Engineering Design : with Application, ” McGraw-Hill, 1984
    26. Yang, D.Y., C.H. Han, “A new formulation of generalized velocity field for axisymmetric forward extrusion through arbitrarily curved dies,” Trans. ASME, J. Eng. Ind., 109 (1987), 161-168
    27. 王水鐸,“高強度鋁合金鍛造成形極限之探討”,國立成功大學碩士論文,1986
    28. 王凱魯等,伸線眼模之設計及加工技術介紹,鍛造,第3期,第13卷,pp.28-40,2004
    29. 李少豪,超細線材之成型技術,金屬工業,第3期,第35卷,pp.26-36,2001
    30. 林文白,雙伸伸線機及其眼模座組,中華民國專利,新型,87209768,2000/09/01
    31. 邵添財,螺旋金屬線條抽線模具之構造,中華民國專利,發明,6510944,1978/11/01
    32. 邵慧昌, “圓管擠伸模具的電腦輔助設計” , 國立成功大學機械工程系碩士論文,1984
    33. 林暉斌,品質工程在SUS304不銹鋼伸線製程之改善,逢甲大學機械工程學系碩士論文,2003
    34. 高永洲,方形栓槽擠伸模具曲面之電腦輔助設計與製造,國立成功大學機械工程學系碩士論文,1988
    35. 陳日興, “高強度鋁合金冷鍛成形極限電腦輔助評估之研究” , 國立成功大學機械工程系碩士論文, 2003
    36. 陳世雄,伸線機眼膜座之構造改良,中華民國專利,新型,86205879,2000/09/11
    37. 梁南鈞,圓棒擠伸模具曲線之電腦輔助設計,國立成功大學機械工程研究所碩士論文,1983
    38. 許進忠,金屬擠伸模具與製程之電腦輔助最佳化設計,國立成功大學機械工程學系博士論文,1991
    39. 鄭新有,從圓錠擠製正多邊棒模具之電腦輔助設計與製造,國立成功大學機械工程研究所碩士論文,1984

    下載圖示 校內:2008-07-31公開
    校外:2008-07-31公開
    QR CODE