| 研究生: |
陶艾迪 Putra, Taufan |
|---|---|
| 論文名稱: |
以Clostridium beijerinckii 進行丁醇醱酵及氣提回收 Butanol fermentation with gas-stripping via Clostridium beijerinckii |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 批次發酵 、氣提發酵 、丁醇 (AB) 、丙酮 、Clostridium beijerinckii |
| 外文關鍵詞: | Acetone butanol (AB), batch fermentation, Clostridium beijerinckii, gas stripping fermentation |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要研究氣提對批次發酵反應器之培養液在原位移除丙酮,丁醇 (AB) 的影響。使用的菌株,Clostridium beijerinckii,不會因為氣提有對其不利的影響。本研究和非整合的程序 (批次發酵) 相比,在產率和產量上有相當大的增進。在利用 Clostridium beijerinckii 整合之 AB 發酵-回收系統中,AB 的產率和產量和控制的批次發酵數據相比,個別增加到 10.8% 和 50。在每公升批次反應器內,Clostridium beijerinckii 利用 30.9 克 葡萄糖且產生總 AB 11.3 克,而在整合的程序中,它利用38.8 克 葡萄糖且產生總 AB 15.3 克。在整合程序中酸全部被轉化成溶劑,而非整合程序的發酵最終殘餘液中則仍有酸的存在。在原位利用氣提移除 AB 已經被指出是所有將溶劑移除的最重要技術中的一項。在本研究中所有的分項實驗都被調控使得 AB 在發酵液裡的濃度低於毒害細胞的程度以下。
另一項實驗的執行是研究微量金屬在發酵液的添加對丁醇生產的影響。結果顯示所選用的菌株在特定的營養組成下需要的微量金屬有ㄧ定的濃度。微量金屬在發酵液的添加顯示鎂和鈣對丁醇的產率有增加的效果。實驗結果顯示每公升培養液添加 1.2 克硫酸鎂使丁醇產率增加,從每克葡萄糖的利用在相同生物質量的分析條件下 (5.35 克),產出 0.073 克的丁醇增加到產出 0.115 克的丁醇。鎂和鈣在培養液的添加對細胞的生長和丁醇的產出是好的。在發酵液裡,當增加微量金屬的量,生物質量濃度液增加。每升發酵液中,添加 1.2 克硫酸鎂最高的生物質量是 5.35 克,添加 6 克硫酸鎂最高的生物質量是 5.98 克,添加 1.1 克氯化鈣最高的生物質量是 4.86 克;由此可知,微量金屬鎂和鈣對生物質量的產出是必須的。
本研究尚探究柳橙皮在發酵液中濃度對乙醇生成菌株 Saccharomyces cerevisiae 生產乙醇的影響。以不同量之柳橙皮添加在發酵液用以決定其對乙醇生產的影響。發酵用之糖液在攝氏 30 度下進行培養。Saccharomyces cerevisiae 產生乙醇的決定是分別在培養 0, 13, 21, 27, 35, 41, 及 48 小時後。150 毫升培養液中加入 1, 1.5, 2, 2.5 克之柳橙皮,產出的乙醇分別是 0.13, 0.10, 0.09, 及 0.08% (v/v),而 0.07% (v/v) 濃度的實現是在 150 毫升培養液中加入 3 克柳橙皮。起始柳橙皮濃度在 150 毫升培養液中從 1 到 3 克的變化大大的影響乙醇的產出,乙醇的產出濃度由 0.13% (v/v) 降至 0.07% (v/v)。
We investigated the impact of gas-stripping on the in situ removal of acetone, butanol, (AB) from batch reactor fermentation broth. The strain, Clostridium beijerinckii, was not affected adversely by gas stripping. A sizable improvement in the productivity and yield was observed in this research in comparison with the non-integrated process. In an integrated process of AB fermentation-recovery using Clostridium beijerinckii, AB productivity and yield were improved up to 50 and 10.8%, respectively, as compared to the controled batch fermentation data. In a batch reactor Clostridium beijerinckii utilized 30.9 g glucose L-1 and produced 11.3 g total AB L-1, while in the integrated process it utilized 38.8 g glucose L-1 and produced total AB of 15.3 g L-1. In the integrated process, acids were totally converted to solvents when compared to the non-integrated process (batch fermentation) which retained residual acids at the end of fermentation. In situ removal of AB by gas stripping has been informed to be one of the most important techniques of solvent removal. During these researches we were capable to maintain the AB concentration in the fermentation broth below toxic levels.
Another study was carried out to study the effect of trace metal addition for butanol production The results show that this bacterial need a selected nutrient with selected concentration. Trace metal addition to the new medium showed that magnesium and calcium enhanced the butanol yield. The results showed that 1.2 g L-1 MgSO4 enhanced the butanol yield from 0.073 g g-1 glucose utilized to 0.115 g g-1 glucose utilized with biomass concentration of 5.35 g L-1. Magnesium and calcium addition were better for growth and for butanol production. Biomass concentration increases as trace metal increases in the fermentation medium. The highest biomass concentration was 5.35 g L-1 at 1.2 g L-1 MgSO4, 5.98 g L-1 at 6 g L-1 MgSO4 and 4.86 g L-1 at 1.1 g L-1 CaCl2, suggested that magnesium and calcium trace metal are necessary for biomass production.
The effect of orange peel concentration on ethanol production by the ethanologenic bacterium Saccharomyces carlsbergensis was investigated. Orange peel was added in various amounts to determine its effects on ethanol production. Fermentation of sugar solutions was conducted at 30 oC. The ethanol produced by Saccharomyces carlsbergensis was determined after 0, 13, 21, 27, 35, 41, and 48 h. At 1, 1.5, 2, 2.5 g per 150 mL orange peel concentration, 0.13, 0.10, 0.09, and 0.08% (v/v) ethanol was achieved respectively, while 0.07% (v/v) was realized at 3 g per 150 ml orange peel concentration. The effect of initial orange peel concentration over the range of 1 to 3 g of dissolved solids per 150 ml greatly decreased the ethanol production from 0.13% (v/v) until 0.07% (v/v).
Allcock, E., Reid, S., Jones, D. and Woods, D. (1981), Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum, Applied and Environmental Microbiology, Vol. 42, 929-935.
Andersch, W., Bahl, H. and Gottschalk, G. (1982), Acetone-butanol production by Clostridium acetobutylicum in an ammonium-limited chemostat at low pH values, Biotechnology Letters, Vol. 4, 29-32.
Andersch, W., Bahl, H. and Gottschalk, G. (1983), Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum, Applied Microbiology and Biotechnology, Vol. 18, 327-332.
Annous, B. and Blaschek, H. (1991), Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity, Applied and Environmental Microbiology, Vol. 57, 2544-2548.
Bahl, H., Andersch, W., Braun, K. and Gottschalk, G. (1982a), Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture, Applied Microbiology and Biotechnology, Vol. 14, 17-20.
Bahl, H., Andersch, W. and Gottschalk, G. (1982b), Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat, Applied Microbiology and Biotechnology, Vol. 15, 201-205.
Ballongue, J., Amine, J., Masion, E., Petitdemange, H. and Gay, R. (1985), Induction of acetoacetate decarboxylase in Clostridium acetobutylicum, FEMS Microbiology Letters, Vol. 29, 273-277.
Ballongue, J., Janati-Idrissi, R., Petitdemange, H. and Gay, R. (1989), Correlation between solvent production and level of solventogenic enzymes in Clostridium acetobutylicum, Journal of applied bacteriology, Vol. 67, 611-617.
Barker, H., Jeng, I., Neff, N., Robertson, J., Tam, F. and Hosaka, S. (1978), Butyryl-CoA: acetoacetate CoA-transferase from a lysine-fermenting Clostridium, Journal of Biological Chemistry, Vol. 253, 1219-1225.
Bernhauer, K. and Kurschner, K. (1935), Butyl-und aceton-Garungen I Millerlung: uber Zwischenprodukte der butanolaceton-Goring, Biochem. Z, Vol. 280, 379-387.
Brown, D., Ganova-Raeva, L., Green, B., Wilkinson, S., Young, M. and Youngman, P. (1994), Characterization of spo0A homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain, Molecular Microbiology, Vol. 14, 411-426.
Buchanan, K., Burton, S., Dorrington, R., Matcher, G. and Skepu, Z. (2001), A novel Pseudomonas putida strain with high levels of hydantoin-converting activity, producing L-amino acids, Journal of Molecular Catalysis. B, Enzymatic, Vol. 11, 397-406.
Chen, C. and Blaschek, H. (1999a), Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101, Applied Microbiology and Biotechnology, Vol. 52, 170-173.
Chen, C. and Blaschek, H. (1999b), Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration, Applied and Environmental Microbiology, Vol. 65, 499-505.
Chen, J. (1995), Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing Clostridia, FEMS microbiology reviews, Vol. 17, 263-273.
Chen, J. and Hiu, S. (1986), Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum), Biotechnology Letters, Vol. 8, 371-376.
Cornillot, E., Nair, R., Papoutsakis, E. and Soucaille, P. (1997), The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain, Journal of Bacteriology, Vol. 179, 5442-5447.
Daesch, G. and Mortenson, L. (1968), Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation, Journal of Bacteriology, Vol. 96, 346-351.
Daesch, G. and Mortenson, L. (1972), Effect of Ammonia on the Synthesis and Function of the N2-Fixing Enzyme System in Clostridium pasteurianum, Journal of Bacteriology, Vol. 110, 103-109.
Dilworth, M., Eady, R., Robson, R. and Miller, R. (1987), Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo, Nature, Vol. 327, 167-168.
Dürre, P. (1998), New insights and novel developments in Clostridial acetone/butanol/isopropanol fermentation, Applied Microbiology and Biotechnology, Vol. 49, 639-648.
Dürre, P., Kuhn, A., Gottwald, M. and Gottschalk, G. (1987), Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum, Applied Microbiology and Biotechnology, Vol. 26, 268-272.
Eady, R. (1996), Structure- Function Relationships of Alternative Nitrogenases, Chem. Rev, Vol. 96, 3013-3030.
Emerich, D. and Burris, R. (1978), Complementary functioning of the component proteins of nitrogenase from several bacteria, Journal of Bacteriology, Vol. 134, 936-943.
Ennis, B., Marshall, C., Maddox, I. and Paterson, A. (1986), Continuous product recovery by in-situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum, Biotechnology Letters, Vol. 8, 725-730.
Ennis, B., Qureshi, N. and Maddox, L. (1987), In-line toxic product removal during solvent production by continuous fermentation using immobilized Clostridium acetobutylicum, Enzyme and microbial technology, Vol. 9, 672-675.
Errington, J. (1993), Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis, Microbiology and Molecular Biology Reviews, Vol. 57, 1-33.
Evans, P. and Wang, H. (1988), Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants, Applied and Environmental Microbiology, Vol. 54, 1662-1667.
Fischer, R., Helms, J. and Durre, P. (1993), Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis, Journal of Bacteriology, Vol. 175, 6959-6969.
Fond, O., Matta-Ammouri, G., Petitdemange, H. and Engasser, J. (1985), The role of acids on the production of acetone and butanol by Clostridium acetobutylicum, Applied Microbiology and Biotechnology, Vol. 22, 195-200.
Fond, O., Petitdemange, E., Petitdemange, H. and Gay, R. (1984), Effect of glucose flow on the acetone butanol fermentation in fed batch culture, Biotechnology Letters, Vol. 6, 13-18.
Fontaine, L., Meynial-Salles, I., Girbal, L., Yang, X., Croux, C. and Soucaille, P. (2002), Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824, Journal of Bacteriology, Vol. 184, 821-830.
Förberg, C., Enfors, S. and Häggström, L. (1983), Control of immobilized, non-growing cells for continuous production of metabolites, Applied Microbiology and Biotechnology, Vol. 17, 143-147.
Formanek, J., Mackie, R. and Blaschek, H. (1997), Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose, Applied and Environmental Microbiology, Vol. 63, 2306-2310.
Gabriel, C. (1928), Butanol Fermentation Process1, Industrial & Engineering Chemistry, Vol. 20, 1063-1067.
Gabriel, C. and Crawford, F. (1930), Development of the butyl-acetonic fermentation industry, Industrial & Engineering Chemistry, Vol. 22, 1163-1165.
Gapes, J., Larsen, V. and Maddox, I. (1983), A note on procedures for inoculum development for the production of solvents by a strain of Clostridium butylicum, Journal of Applied Microbiology, Vol. 55, 363-365.
Gavard, R., Hautecoeur, B. and Descourtieux, H. (1957), Phosphotransbutyrylase de Clostridium acetobutylicum, CR Hebd Seances Acad Sci, Vol. 244, 2323-2326.
George, H. and Chen, J. (1983), Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym, C. butylicum), Applied and Environmental Microbiology, Vol. 46, 321-327.
Georgiadis, M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J. and Rees, D. (1992), Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii, Science, Vol. 257, 1653-1659.
Gerischer, U. and Durre, P. (1992), mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis, Journal of Bacteriology, Vol. 174, 426-433.
Gottschal, J. and Morris, J. (1981a), The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate, FEMS Microbiology Letters, Vol. 12, 385-389.
Gottschal, J. and Morris, J. (1981b), Non-production of acetone and butanol by Clostridium acetobutylicum during glucose-and ammonium-limitation in continuous culture, Biotechnology Letters, Vol. 3, 525-530.
Grohmann, K., Baldwin, E. and Buslig, B. (1994), Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae, Applied biochemistry and biotechnology, Vol. 45, 315-327.
Groot', W., Qever, C. and Kossen, N. (1984), Pervaporation for simultaneous product recovery in the butanol/isopropanol batch fermentation, Biotechnology Letters, Vol. 6, 709-714.
Groot, W., Lans, R. and Luyben, K. (1989), Batch and continuous butanol fermentations with free cells: integration with product recovery by gas-stripping, Applied Microbiology and Biotechnology, Vol. 32, 305-308.
Groot, W., Van der Lans, R. and Luyben, C. (1992), Technologies for butanol recovery integrated with fermentations, Process Biochemistry, Vol. 27, 61-75.
Grupe, H. and Gottschalk, G. (1992), Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction, Applied and Environmental Microbiology, Vol. 58, 3896-3902.
Hartmanis, M. (1987), Butyrate kinase from Clostridium acetobutylicum, Journal of Biological Chemistry, Vol. 262, 617-621.
Hartmanis, M., Åhlman, H. and Gatenbeck, S. (1986), Stability of solvent formation in Clostridium acetobutylicum during repeated subculturing, Applied Microbiology and Biotechnology, Vol. 23, 369-371.
Hartmanis, M. and Gatenbeck, S. (1984), Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate, Applied and Environmental Microbiology, Vol. 47, 1277-1283.
Hartmanis, M., Klason, T. and Gatenbeck, S. (1984), Uptake and activation of acetate and butyrate in Clostridium acetobutylicum, Applied Microbiology and Biotechnology, Vol. 20, 66-71.
Holt, R., Stephens, G. and Morris, J. (1984), Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH, Applied and Environmental Microbiology, Vol. 48, 1166-1170.
Huang, K., Huang, S., Rudolph, F. and Bennett, G. (2000), Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824, Journal of Molecular Microbiology and Biotechnology, Vol. 2, 33-38.
Huesemann, M. and Papoutsakis, E. (1986), Effect of acetoacetate, butyrate, and uncoupling ionophores on growth and product formation of Clostridium acetobutylicum, Biotechnology Letters, Vol. 8, 37-42.
Hüsemann, M. and Papoutsakis, E. (1989), Enzymes limiting butanol and acetone formation in continuous and batch cultures of Clostridium acetobutylicum, Applied Microbiology and Biotechnology, Vol. 31, 435-444.
Ingram, L. and Buttke, T. (1984), Effects of alcohols on micro-organisms, Adv Microb Physiol, Vol. 25, 253-300.
Ismaiel, A., Zhu, C., Colby, G. and Chen, J. (1993), Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii, Journal of Bacteriology, Vol. 175, 5097-5105.
Jacobson, M., Brigle, K., Bennett, L., Setterquist, R., Wilson, M., Cash, V., Beynon, J., Newton, W. and Dean, D. (1989), Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii, Journal of Bacteriology, Vol. 171, 1017-1027.
Jesse, T., Ezeji, T., Qureshi, N. and Blaschek, H. (2002), Production of butanol from starch-based waste packing peanuts and agricultural waste, Journal of Industrial Microbiology and Biotechnology, Vol. 29, 117-123.
Johnson, J., Toth, J., Santiwatanakul, S. and Chen, J. (1997), Cultures of" Clostridium acetobutylicum" from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation, International Journal of Systematic and Evolutionary Microbiology, Vol. 47, 420-424.
Jones, D., Van der Westhuizen, A., Long, S., Allcock, E., Reid, S. and Woods, D. (1982), Solvent production and morphological changes in Clostridium acetobutylicum, Applied and Environmental Microbiology, Vol. 43, 1434-1439.
Jones, D. and Woods, D. (1986), Acetone-butanol fermentation revisited, Microbiology and Molecular Biology Reviews, Vol. 50, 484-524.
Junelles, A., Janati-Idrissi, R., Petitdemange, H. and Gay, R. (1988), Iron effect on acetone-butanol fermentation, Current Microbiology, Vol. 17, 299-303.
Kashket, E. and Cao, Z. (1993), Isolation of a degeneration-resistant mutant of Clostridium acetobutylicum NCIMB 8052, Applied and Environmental Microbiology, Vol. 59, 4198-4202.
Kessler, P., Daniel, C. and Leigh, J. (2001), Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, NifI1 and NifI2, Journal of Bacteriology, Vol. 183, 882-889.
Killeffer, D. (1927), Butanol and Acetone from Corn1: A Description of the Fermentation Process, Industrial & Engineering Chemistry, Vol. 19, 46-50.
Kim, B., Bellows, P., Datta, R. and Zeikus, J. (1984), Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields, Applied and Environmental Microbiology, Vol. 48, 764-770.
Kim, J., Woo, D. and Rees, D. (1993), X-ray crystal structure of the nitrogenase molybdenum-iron protein from Clostridium pasteurianum at 3.0-. ANG. resolution, Biochemistry, Vol. 32, 7104-7115.
Kutzenok, A. and Aschner, M. (1952), Degenerative processes in a strain of Clostridium butylicum, Journal of Bacteriology, Vol. 64, 829-836.
Lee, S., Forsberg, C. and Gibbins, L. (1985), Cellulolytic activity of Clostridium acetobutylicum, Applied and Environmental Microbiology, Vol. 50, 220-228.
Lenz, T. and Morelra, A. (1980), Economic evaluation of the acetone-butanol fermentation, Industrial & Engineering Chemistry Product Research and Development, Vol. 19, 478-483.
Lepage, C., Fayolle, F., Hermann, M. and Vandecasteele, J. (1987), Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH, Journal of general microbiology, Vol. 133, 103-110.
Lewis, R., Scott, D., Brannigan, J., Ladds, J., Cervin, M., Spiegelman, G., Hoggett, J., Barák, I. and Wilkinson, A. (2002), Dimer formation and transcription activation in the sporulation response regulator Spo0A, Journal of molecular biology, Vol. 316, 235-245.
Long, S., Jones, D. and Woods, D. (1984a), Initiation of solvent production, Clostridial stage and endospore formation in Clostridium acetobutylicum P262, Applied Microbiology and Biotechnology, Vol. 20, 256-261.
Long, S., Jones, D. and Woods, D. (1984b), The relationship between sporulation and solvent production in Clostridium acetobutylicum P262, Biotechnology Letters, Vol. 6, 529-534.
Maddox, I. (1989), The acetone-butanol-ethanol fermentation: recent progress in technology, Biotechnology & genetic engineering reviews, Vol. 7, 189-220.
Maddox, I., Qureshi, N. and Roberts-Thomson, K. (1995), Production of acetone-butanol-ethanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process, Process biochemistry(1991), Vol. 30, 209-215.
Mandal, T. and Mandal, N. (1998), Biomethanation of some waste materials with pure metallic magnesium catalyst: Improved biogas yields, Energy conversion and management, Vol. 39, 1177-1179.
Martin, J., Petitdemange, H., Ballongue, J. and Gay, R. (1983), Effects of acetic and butyric acids on solvents production by Clostridium acetobutylicum, Biotechnology Letters, Vol. 5, 89-94.
McDaniel, L., Woolley, D. and Peterson, W. (1939), Growth Factors for Bacteria VII. Nutrient Requirements of Certain Butyl Alcohol-producing Bacteria 1, Journal of Bacteriology, Vol. 37, 259-268.
Meyer, C. and Papoutsakis, E. (1989), Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum, Applied Microbiology and Biotechnology, Vol. 30, 450-459.
Miller, G. (1959), Use of dinitrosaIicyIic acid reagent for determination of reducing sugar, Anal chem, Vol. 31, 426–428.
Mollah, A. and Stuckey, D. (1993), Feasibility of in situ gas stripping for continuous acetone-butanol fermentation by Clostridium acetobutylicum, Enzyme and microbial technology, Vol. 15, 200-207.
Monot, F. and Engasser, J. (1983), Production of acetone and butanol by batch and continuous culture of Clostridium acetobutylicum under nitrogen limitation, Biotechnology Letters, Vol. 5, 213-218.
Monot, F., Engasser, J. and Petitdemange, H. (1984), Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum, Applied Microbiology and Biotechnology, Vol. 19, 422-426.
Morgan, J., Evison, L. and Forster, C. (1991), Changes to the microbial ecology in anaerobic digesters treating ice cream wastewater during start-up, Water Research, Vol. 25, 639-653.
Nair, R., Bennett, G. and Papoutsakis, E. (1994), Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824, Journal of Bacteriology, Vol. 176, 871-885.
Nair, R., Green, E., Watson, D., Bennett, G. and Papoutsakis, E. (1999), Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor, Journal of Bacteriology, Vol. 181, 319-330.
Nielsen, L., Larsson, M., Holst, O. and Mattiasson, B. (1988), Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation, Applied Microbiology and Biotechnology, Vol. 28, 335-339.
Nolling, J., Breton, G., Omelchenko, M., Makarova, K., Zeng, Q., Gibson, R., Lee, H., Dubois, J., Qiu, D. and Hitti, J. (2001), Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum, Journal of Bacteriology, Vol. 183, 4823-4838.
Ounine, K., Petitdemange, H., Raval, G. and Gay, R. (1985), Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum, Applied and Environmental Microbiology, Vol. 49, 874-878.
Palosaari, N. and Rogers, P. (1988), Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum, Journal of Bacteriology, Vol. 170, 2971-2976.
Pau, R. (1994), Metals and nitrogenase, Advances in Inorganic Biochemistry, Vol. 10, 49-70.
Peguin, S., Goma, G., Delorme, P. and Soucaille, P. (1994), Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition, Applied Microbiology and Biotechnology, Vol. 42, 611-616.
Petersen, D. and Bennett, G. (1991), Cloning of the Clostridium acetobutylicum ATCC 824 acetyl coenzyme A acetyltransferase (thiolase; EC 2.3. 1.9) gene, Applied and Environmental Microbiology, Vol. 57, 2735-2741.
Petitdemange, H., Desbordes, J., Berthelin, J. and Gay, R. (1968), Conversion enzymatique du n-butyraldéhyde en n-butanol chez Clostridium acétobutylicum, CR Acad Sci Hebd Seances Acad Sci D, Vol. 266, 1772-1774.
Quisel, J., Burkholder, W. and Grossman, A. (2001), In vivo effects of sporulation kinases on mutant Spo0A proteins in Bacillus subtilis, Journal of Bacteriology, Vol. 183, 6573-6578.
Qureshi, N. and Blaschek, H. (2000), Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation, Applied biochemistry and biotechnology, Vol. 84, 225-235.
Qureshi, N. and Blaschek, H. (2001a), ABE production from corn: a recent economic evaluation, Journal of Industrial Microbiology and Biotechnology, Vol. 27, 292-297.
Qureshi, N. and Blaschek, H. (2001b), Recovery of butanol from fermentation broth by gas stripping, Renewable Energy, Vol. 22, 557-564.
Qureshi, N. and Maddox, I. (1990), Integration of continuous production and recovery of solvents from whey permeate: use of immobilized cells of Clostridium acetobutylicum in a flutilized bed reactor coupled with gas stripping, Bioprocess and Biosystems Engineering, Vol. 6, 63-69.
Qureshi, N., Meagher, M., Huang, J. and Hutkins, R. (2001), Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum, Journal of Membrane Science, Vol. 187, 93-102.
Qureshi, N., Meagher, M. and Hutkins, R. (1999), Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane, Journal of Membrane Science, Vol. 158, 115-125.
Raina, R., Reddy, M., Ghosal, D. and Das, H. (1988), Characterization of the gene for the Fe-protein of the vanadium dependent alternative nitrogenase of Azotobacter vinelandii and construction of a Tn5 mutant, Molecular Genetics and Genomics, Vol. 214, 121-127.
Rao, G. and Mutharasan, R. (1986), Alcohol production by Clostridium acetobutylicum induced by methyl viologen, Biotechnology Letters, Vol. 8, 893-896.
Ravagnani, A., Jennert, K., Steiner, E., Grunberg, R., Jefferies, J., Wilkinson, S., Young, D., Tidswell, E., Brown, D. and Youngman, P. (2000), Spo0A directly controls the switch from acid to solvent production in solvent-forming Clostridia, Molecular Microbiology, Vol. 37, 1172-1185.
Ribbe, M., Gadkari, D. and Meyer, O. (1997), N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase, Journal of Biological Chemistry, Vol. 272, 26627-26633.
Rogers, P. (1986), Genetics and biochemistry of Clostridium relevant to development of fermentation processes, Advances in applied microbiology, Vol. 31, 1-60.
Rosenblum, E. and Wilson, P. (1949), Fixation of isotopic nitrogen by Clostridium 1, Journal of Bacteriology, Vol. 57, 413-414.
Ross, R., D'Elia, J., Mooney, R. and Chesbro, W. (1990), Nutrient limitation of two saccharolytic Clostridia; secretion, sporulation, and solventogenesis, FEMS Microbiology Letters, Vol. 74, 153-163.
Sauer, U. and Durre, P. (1995), Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum, FEMS Microbiology Letters, Vol. 125, 115-120.
Schoutens, G. and Groot, W. (1935), Economic feasibility of the production of iso-propanol-butanol-ethanol fuels from whey permeate, Process Biochemistry, Vol. 20, 117-121.
Stadtman, E. (1952), The purification and properties of phosphotransacetylase, Journal of Biological Chemistry, Vol. 196, 527-534.
Stephens, G., Holt, R., Gottschal, J. and Morris, J. (1985), Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture, Journal of Applied Microbiology, Vol. 58, 597-605.
Subba, M., Soumithri, T. and Rao, R. (1967), Antimicrobial action of citrus oils, Journal of Food Science, Vol. 32, 225-227.
Tatum, E., PETERSON, W. and Fred, E. (1935), Identification of asparagine as the substance stimulating the production of butyl alcohol by certain bacteria, Jour. Bact, Vol. 29, 563-572.
Terracciano, J. and Kashket, E. (1986), Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum, Applied and Environmental Microbiology, Vol. 52, 86-91.
Thompson, D. and Chen, J. (1990), Purification and properties of an acetoacetyl coenzyme A-reacting phosphotransbutyrylase from Clostridium beijerinckii (" Clostridium butylicum") NRRL B593, Applied and Environmental Microbiology, Vol. 56, 607-613.
Thormann, K., Feustel, L., Lorenz, K., Nakotte, S. and Durre, P. (2002), Control of butanol formation in Clostridium acetobutylicum by transcriptional activation, Journal of Bacteriology, Vol. 184, 1966-1973.
Toth, J., Ismaiel, A. and Chen, J. (1999), The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing Clostridia from Clostridium acetobutylicum, Applied and Environmental Microbiology, Vol. 65, 4973-4980.
Twarog, R. and Wolfe, R. (1963), Role of butyryl phosphate in the energy metabolism of Clostridium tetanomorphum, Journal of Bacteriology, Vol. 86, 112-117.
Ullmann, S., Kuhn, A. and Dürre, P. (1996), DNA topology and gene expression in Clostridium acetobutylicum: implications for the regulation of solventogenesis, Biotechnology Letters, Vol. 18, 1413-1418.
Upchurch, R. and Mortenson, L. (1980), In vivo energetics and control of nitrogen fixation: changes in the adenylate energy charge and adenosine 5'-diphosphate/adenosine 5'-triphosphate ratio of cells during growth on dinitrogen versus growth on ammonia, Journal of Bacteriology, Vol. 143, 274-284.
Uribe, S. and Pena, A. (1990), Toxicity of allelopathic monoterpene suspensions on yeast dependence on droplet size, Journal of chemical ecology, Vol. 16, 1399-1408.
Uribe, S., Ramirez, J. and Pena, A. (1985), Effects of beta-pinene on yeast membrane functions, Journal of Bacteriology, Vol. 161, 1195-1200.
Uribe, S., Rangel, P., Espinola, G. and Aguirre, G. (1990), Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria, Applied and Environmental Microbiology, Vol. 56, 2114-2119.
Valentine, R. and Wolfe, R. (1960), Purification and role of phosphotransbutyrylase, Journal of Biological Chemistry, Vol. 235, 1948-1952.
Vasconcelos, I., Girbal, L. and Soucaille, P. (1994), Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol, Journal of Bacteriology, Vol. 176, 1443-1450.
Wang, X., Ren, N., Sheng Xiang, W. and Qian Guo, W. (2007), Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49, International Journal of Hydrogen Energy, Vol. 32, 748-754.
Waterson, R., Castellino, F., Hass, G. and Hill, R. (1972), Purification and characterization of crotonase from Clostridium acetobutylicum, Journal of Biological Chemistry, Vol. 247, 5266-5271.
Waugh, S., Paulsen, D., Mylona, P., Maynard, R., Premakumar, R. and Bishop, P. (1995), The genes encoding the delta subunits of dinitrogenases 2 and 3 are required for mo-independent diazotrophic growth by Azotobacter vinelandii, Journal of Bacteriology, Vol. 177, 1505-1510.
Welch, R., Rudolph, F. and Papoutsakis, E. (1989), Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum(ATCC 824), Archives of biochemistry and biophysics(Print), Vol. 273, 309-318.
Wiesenborn, D., Rudolph, F. and Papoutsakis, E. (1989), Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis, Applied and Environmental Microbiology, Vol. 55, 317-322.
Wilke, D. (1999), Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry, Applied Microbiology and Biotechnology, Vol. 52, 135-145.
Wilkins, M., Suryawati, L., Maness, N. and Chrz, D. (2007), Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil, World Journal of Microbiology and Biotechnology, Vol. 23, 1161-1168.
Winzer, K., Lorenz, K. and Durre, P. (1997), Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis, Microbiology, Vol. 143, 3279-3286.
Wood, H., Brown, R. and Werkman, C. (1945), Mechanism of the butyl alcohol fermentation with heavy carbon acetic and butyric acids and acetone, Arch. Biochem, Vol. 6, 243-260.
Woolley, R. and Morris, J. (1990), Stability of solvent production by Clostridium acetobutylicum in continuous culture: strain differences, Journal of Applied Microbiology, Vol. 69, 718-728.
Yan, R. and Chen, J. (1990), Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592, Applied and Environmental Microbiology, Vol. 56, 2591-2599.
Yan, R., Zhu, C., Golemboski, C. and Chen, J. (1988), Expression of Solvent-Forming Enzymes and Onset of Solvent Production in Batch Cultures of Clostridium beijerinckii ("Clostridium butylicum"), Applied and Environmental Microbiology, Vol. 54, 642-648.
Young, J. (1992), Phylogenetic classification of nitrogen-fixing organisms, Biological nitrogen fixation, Vol. 1, 43-86.
Yu, E. and Saddler, J. (1983), Enhanced acetone-butanol fermentation by Clostridium acetobutylicum grown on D-xylose in the presence of acetic or butyric acid, FEMS Microbiology Letters, Vol. 18, 103-107.
Yu, H., Tay, J. and Fang, H. (2001), The roles of calcium in sludge granulation during UASB reactor start-up, Water Research, Vol. 35, 1052-1060.
Zappe, H., Jones, D. and Woods, D. (1986), Cloning and expression of Clostridium acetobutylicum endoglucanase, cellobiase and amino acid biosynthesis genes in Escherichia coli, Journal of general microbiology, Vol. 132, 1367-1372.