簡易檢索 / 詳目顯示

研究生: 李辰偉
Li, Chen-Wei
論文名稱: 低成本雷射批覆製造軟硬體整合研究
Research on integration of software and hardware of low-cost laser cladding
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: DED鈷基超合金光纖雷射製程整合
外文關鍵詞: DED, Cobalt based super alloy, Fiber laser, Integration
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為針對金屬雷射披覆系統低成本化的實踐,自行對機台軟硬體和披覆製程進行開發,硬體端整合了光纖雷射、同軸送粉噴頭與運動控制系統,其中加入第四軸旋轉平台實現複雜曲面披覆,介面則使用LabVIEW完成各式控制器與FPGA的機電整合。製程部分,針對工業用沖棒與切斷刀表面進行披覆參數調教,沖棒在改善前積層厚度不足且結構產生剝離現象,以預熱提升介面間鍵結強度,並以高功率配合適當重疊率達到5層7.22 mm厚、各層表面平坦且無孔隙生成的結果;切斷刀分為三個位置實行不同積層策略,該策略結果顯示使用旋轉軸披覆情況良好,兩層達2 mm以上厚度,但仍需改善厚度、垂直邊界稀釋率低的問題。
    以自行撰寫的軟體對Fusion 360、SolidCAM等商用CAD/CAM軟體進行二次開發,結合在披覆過程中的製造經驗,生成適用於模具加工用沖棒、切斷刀表面披覆路徑,該成果可應用於複雜曲面披覆,提升製程的可擴展性。最後將機台加入製程日誌資料庫,除了將製程存儲在本地硬碟,也能透過自行搭建的伺服器存儲在遠端資料庫供未來快速存取用。

    Direct energy deposition can be applied on metal substrates for additive manufacturing or repairing. This thesis mainly discusses about a low-cost integration method on laser cladding system for small and medium enterprise to adopt in the near future. This system includes a kW-class Yb-doped fiber laser, powder delivery system and motion control module. Via paper review and experiment, we conclude several factors that will affect the quality of final result and try our best to improve the geometrical characteristics of the deposition. After analysis, we integrate the experience during the process into two software program, which can not only act as a CAM software for specific target, but also a better solution for reducing the cost.

    摘要 I 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XVIII 第1章 緒論 1 1.1 研究動機 1 1.2 文獻探討 3 1.3 研究目的 6 1.4 研究方法 6 第2章 金屬積層製造技術 7 2.1 黏著劑噴塗成型技術 7 2.2 板層壓成型技術 9 2.3 粉末床熔融成型技術 10 2.4 直接能量沉積技術 12 2.5 DED 商業化 15 第3章 金屬積層製造軟硬體與檢測系統 17 3.1 千瓦級雷射積層製造系統 17 3.1.1 運動控制 17 3.1.2 雷射控制 21 3.1.3 同軸雷射送粉機 24 3.1.4 周邊設備 30 3.1.5 感測器應用 31 3.1.6 機電整合 33 3.2 Stellite 6粉末及其機械性質 34 3.2.1 組成特性 34 3.2.2 機械性質 35 3.2.3 微觀性質 36 3.3 檢測系統 37 3.3.1 光學檢測系統 37 3.3.2 電子顯微鏡 39 3.4 機台性能檢測 41 3.4.1 粉末質量流率 41 3.4.2 綜合性能測試 43 第4章 製造參數最佳化 45 4.1 沖棒背景介紹 45 4.2 披覆參數測試 46 4.2.1 主要參數介紹 46 4.2.2 單道披覆實驗 48 4.2.3 預熱實驗 51 4.2.4 設計參數實驗 54 4.3 沖棒披覆 58 4.3.1 溫度量測 58 4.3.2 預熱對稀釋區影響 62 4.3.3 表面品質 65 4.3.4 積層厚度 69 4.3.5 沖棒披覆整合 74 4.4 切斷刀背景介紹 78 4.5 加工規劃 80 4.5.1 軟體概覽 80 4.5.2 加工路徑生成 81 4.5.3 硬體規劃與配置 85 4.6 切斷刀披覆 86 4.6.1 動態預熱 86 4.6.2 小缺口路徑 88 4.6.3 平面缺口路徑 90 4.6.4 旋轉缺口路徑 92 4.6.5 切斷刀披覆整合 95 4.7 大切斷刀討論 97 第5章 披覆系統智慧整合 99 5.1 沖棒披覆路徑生成軟體 99 5.1.1 軟體介面 100 5.1.2 模組化功能 101 5.1.3 軟體輸出成果 104 5.2 切斷刀路徑生成整合 105 5.2.1 共同設置 106 5.2.2 小缺口 108 5.2.3 平面缺口 111 5.2.4 整合流程 113 第6章 結論與未來建議 115 6.1 結論 115 6.2 未來建議 116 6.3 未來展望 117 參考文獻 118

    [1] AN ENGINEER’S GUIDE TO LASER CUTTING. Available:
    https://tristatefabricators.com/an-engineers-guide-to-laser-cutting/
    [2] International Organization for Standardization (2018), Additive manufacturing General principles Terminology. ISO/ASTM 52900.
    [3] Kandice S. B. Ribeiro, Fábio E. Mariani, Reginaldo T. Coelho (2020), A Study of Different Deposition Strategies in Direct Energy Deposition (DED) Processes.
    [4] Do-Sik Shim, Gyeong-Yun Baek, Eun-Mi Lee (2016), Effect of substrate preheating by induction heater on direct energy deposition.
    [5] C. P. Paul, S. K. Mishra, C. H. Premsingh, P. Bhargava, P. Tiwari, L. M. Kukreja (2012), Studies on laser rapid manufacturing of cross-thin-walled porous structures of Inconel 625.
    [6] Edvard Govekar, Andrej Jeromen, Alexander Kuznetsov, Gideon Levy, Makoto Fujishima (2018), Study of an annular laser beam based axially-fed powder cladding.
    [7] Adrita Dass, Atieh Moridi (2019), State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design.
    [8] Parvaneh Zareh, R. J. Urbanic (2020), Experimental analysis of single layer multi-track deposition of clad beads with variable overlap percentages.
    119
    [9] 張廷愷張廷愷,,應用田口實驗法優化雷射鈷基金屬披覆參數之研究應用田口實驗法優化雷射鈷基金屬披覆參數之研究,國,國立成功大學系統所碩士論文立成功大學系統所碩士論文,,2020。。
    [10] 石佩璇石佩璇,,千瓦級雷射的溫場效應對金屬披覆成效之研究千瓦級雷射的溫場效應對金屬披覆成效之研究,國立成,國立成功大學系統所碩士論文,功大學系統所碩士論文,2020。。
    [11] Zi-jue Tang, Wei-wei Liu, Yi-wen Wang, Kaze Mojtaba Saleheen, Zhi-chao Liu (2020), A review on in situ monitoring technology for directed energy deposition.
    [12] Shuang Liu, ParisaFarahmand, Radovan Kovacevic (2014), Optical monitoring of high power direct diode laser cladding.
    [13] Almir Heralic, Anna-Karin Christiansson, Mattias Ottosson, Bengt Lennartson (2010), Increased stability in laser metal wire deposition through feedback from optical measurements.
    [14] Ming Li, Wenchao Du, Alaa Elwany, Zhijian Pei, Chao Ma (2020), Metal Binder Jetting Additive Manufacturing: A Literature Review.
    [15] Sheet Lamination – an overview, Science Dircet Topics. Available : https://engineeringproductdesign.com/knowledge-base/sheet-lamination/
    [16] D. Dev Singh, T. Mahender , Avala Raji Reddy (2020) Powder bed fusion process: A brief review.
    [17] Simens Ni Alloy Based Turbine Blade. Available: https://blogs.sw.siemens.com/nx-design/3d-printing-in-nx/
    [18] Dong-Gyu Ahn (2021), Directed Energy Deposition (DED) Process: State of the Art.
    [19] Tom Cobbs, Lucas Brewer, Jeffery L. Crandall. DED for Repair of Industrial Components.
    [20] Deloro Stellite (2008), STELLITE® 6 ALLOY. Retrieved from https://reurl.cc/OA3Yz3 (June 24,2022).
    [21] Deloro Stellite, TECHNICAL DATA OF STELLITE 6 ALLOY. Retrieved from https://reurl.cc/M0532W (June 24,2022).
    [22] H. Özkan Güülsoy, Özgüür Özgüün, Sezer Bilketay (2016), Powder injection molding of Stellite 6 powder : Sintering, microstructural and mechanical properties.
    [23] Zhiyuan Zhu, Chun Ouyang, Yanxin Qiao, Xiaowei Zhou (2017), Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Ard Surfacing Process.
    [24] 分析型場發掃描式電子顯微鏡 -成功大學貴重儀器中心 , Available:
    https://researchoutput.ncku.edu.tw/zh/equipments/analytical-field-emission-scanning-electron-microscope
    [25] VacCoat: Vacuum Coating Systems (2020), FIELD EMISSION SCANNING ELECTRON MICROSCOPE (FE-SEM). Retrieved from https://reurl.cc/yr82Ol (June 28,2022).
    121
    [26] The Center for Scientific and Technological Equipment, Suranaree University of Technology (2013), Field Emission Scanning Electron Microscope (FE-SEM), Retrieved from https://reurl.cc/vdzrxj (June 28,2022).
    [27] LION METAL, SKD61 Tool Steel. Retrieved from https://reurl.cc/9GK2YX (July 5,2022).
    [28] Dong-Gyu Ahn (2021), Directed Energy Deposition (DED) Process: State of the Art.
    [29] Pedro Ramiro, Mikel Ortiz, Amaia Alberdi, Aitzol Lamikiz (2020), Strategy Development for the Manufacturing of Multilayered Structures of Variable Thickness of Ni-Based Alloy 718 by Powder-Fed Directed Energy Deposition.
    [30] U. de Oliveira, V. Ocelı´k, J.Th.M. De Hosson (2004), Analysis of coaxial laser cladding processing conditions
    [31] Do-Sik Shim (2016) Effect of layer thickness setting on deposition characteristics in direct energy deposition( DED )process
    [32] Christoph Roser at AllAboutLean.com
    [33] 郭軒豪,郭軒豪,網路連結之積層製造系統整合研究網路連結之積層製造系統整合研究,國立成功大學系統,國立成功大學系統所碩士論文,所碩士論文,2018。。
    [34] Python 學習學習之解析之解析 Flask 運運行原理行原理 (2022), Retrieved from :
    https://www.php.cn/python-tutorials-489421.html

    無法下載圖示 校內:2028-02-08公開
    校外:2028-02-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE