簡易檢索 / 詳目顯示

研究生: 林威智
Lin, Wei-Chih
論文名稱: 應用微影技術於板金成形網格尺寸效應之研究
Study on Size Effect of the Grid Dimensions in Sheet Metal Forming Using Photolithography Technique
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 113
中文關鍵詞: 網格尺寸效應板金成形微影技術
外文關鍵詞: Photolithography Technique, Sheet Metal Forming, Size Effect of the Grid Dimensions
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    在過去板金成形極限的研究大多數應用於大型的工件上如汽車板金,但隨著工業產品的微小化,在建立FLD時,也要跟著蝕刻上細小網格,而在文獻中並沒有針對網格大小於板金可成形性的影響之探討。

    本文以破壞能量準則來預測金屬材料之成形極限,並對材料進行可成形性試驗,以獲取實驗之成形極限圖,將理論所預測之成形極限圖與實驗所量測之成形極限圖互相比較驗證,以潤滑條件、網格大小、網格幾何形狀為變因,研究其對SUS304不銹鋼板金可成形性之影響。

    本文以能量準則預測出成形極限,將能量準則所預測之FLD與實驗值比較,結果顯示相當吻合。由實驗得知以電化學方法蝕刻之網格大小極限約在400μm。以鐵氟龍潤滑可以比沖壓油潤滑下得到較高的FLD實驗應變值,得知以鐵氟龍潤滑可得到較佳的可成形性。網格越細小之FLD實驗應變值越大,危險與安全網格之極限應變帶越小,解析度越好。若網格越細小,則破壞應變能量常數越大。因此,蝕刻較細小的網格則能得到更接近真實的極限應變量。

    ABSTRACT
    In the past, most studies of forming limit of sheet metal were mainly for large-sized workpieces, for example, automobile stamping parts. Recently, more and more industrial products become small. When building the Forming Limit Diagram (FLD), it also needs to etch small grids. The literature rarely studied the effect of the grid size on sheet metal formability.
    This study is based on fracture energy criterion to predict the FLD using the fracture strains from formability test. The predicted forming limit diagrams were compared with experimental data for different lubrication conditions, grid geometries and grid dimensions for SUS304 stainless steel.
    The predicted forming limit diagrams by fracture energy criterion agree quite well with those by experiments. From the experiment, the limit of grid dimension was about 400μm by the electrical chemical etching method. It can obtain higher forming limit for Teflon lubrication than that for oil lubrication. It indicated that Teflon lubrication exhibits better formability. The smaller grid dimension, the higher forming limit is. The bounds between dangerous and safety grid is smaller, and the resolution is better for smaller grid. The smaller the grid dimension, the higher the fracture energy constant is. Therefore, the smaller grid can obtain limit strain closer to the real forming limit.

    中文摘要 ……………………………………………………… Ⅰ 英文摘要 ……………………………………………………… Ⅱ 誌謝 ……………………………………………………………. Ⅲ 總目錄 ………………………………………………………… Ⅳ 表目錄 ………………………………………………………… Ⅶ 圖目錄 ………………………………………………………… Ⅷ 符號說明 ……………………………………………………… ⅩⅢ 一、導論 ……………………………………………………… 1 1-1、前言 …………………………………………………… 1 1-2、板金成形背景介紹 …………………………………. 2 1-3、文獻回顧 ……………………………………………… 3 1-4、本文研究範疇 ……………………………………….. 8 二、理論分析 ………………………………………………. 10 2-1、影響板金成形性的材料性質理論 ………………. 10 2-1.1、應變硬化指數 ………………………………………. 10 2-1.2、正向異向性 …………………………………………. 11 2-2、板金成形極限理論 …………………………………. 12 2-2.1、基本假設 ……………………………………………. 12 2-2.2、能量破壞準則 ………………………………………. 13 2-3、成形極限圖(FLD)介紹 ……………………………. 16 三、材料性質試驗方法及成形極限圖之建立 ….. 19 3-1、材料性質試驗 ………………………………………. 19 3-1.1、實驗目的 …………………………………………… 19 3-1.2、應變硬化指數之測定 ……………………………… 19 3-1.3、正向異向性之測定 ………………………………… 21 3-1.4、初始晶粒大小之測定 ……………………………… 23 3-2、成形極限試驗 ………………………………………. 25 3-2.1、實驗目的 …………………………………………… 25 3-2.2、網格蝕刻 …………………………………………… 27 3-2.3、可成形性試驗 ……………………………………… 32 3-2.4、網格影像量測處理 ………………………………… 35 四、板金成形網格尺寸效應之可成形性試驗 ….. 41 4-1、細小網格之製程 ……………………………………. 41 4-1.1、光阻旋轉塗佈 ……………………………………… 43 4-1.2、光罩對準曝光與顯影 ……………………………… 47 4-1.3、電化學蝕刻方法 …………………………………… 52 4-2、網格樣式之選用 ……………………………………. 53 4-3、網格蝕刻後之解析度 ……………………………… 58 4-4、可成形性試驗後各網格影像量測處理 ………… 61 4-5、網格尺寸效應之應變分析比較 ………………….. 64 五、結果與討論 …………………………………………… 66 5-1、材料性質試驗結果 ………………………………… 66 5-1.1、應變硬化指數 ……………………………………… 66 5-1.2、正向異向性 ………………………………………… 68 5-1.3、初始晶粒大小 ……………………………………… 69 5-2、可成形性試驗結果 ………………………………… 70 5-2.1、潤滑條件對成形性之影響 ………………………… 71 5-2.2、圓形網格大小對成形性之影響 …………………… 74 5-2.3、方形網格大小對成形性之影響 …………………… 76 5-2.4、網格幾何形狀對成形性之影響 …………………… 78 5-3、應用能量準則預測成形極限圖 …………………. 81 5-3.1、潤滑條件在能量準則預測之FLD比較 ………….. 84 5-3.2、圓形網格大小在能量準則預測之FLD比較 …….. 87 5-3.3、方形網格大小在能量準則預測之FLD比較 …….. 89 5-3.4、網格幾何形狀在能量準則預測之FLD比較 …….. 91 5-4、理論與實驗成形極限圖比較 …………………….. 93 5-4.1、以圓形網格之理論與實驗成形極限圖比較 ……… 93 5-4.2、以方形網格之理論與實驗成形極限圖比較 ……… 96 六、結論與建議 …………………………………………… 100 6-1、結論 …………………………………………………… 100 6-2、建議 …………………………………………………… 102 參考文獻 ……………………………………………………… 104 自述 …………………………………………………………….. 113

    參考文獻
    1. Aoki, I. and T. Takshashi,“Micro-parts Fabrication Technique by Shearing of Thin Wire”, Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.2, pp.913-920, Sep. 19-24, 1999.
    2. Atkin, A. G.,“Possible Explanation for the Unexpected Departure in Hydrostatic Tension Fracture Strain Relation”, Metal. Sci., Vol.15, No.2, pp.81-83, Feb., 1981.
    3. Banabic, D.,“Limit Strains in the Sheet Metals by Using the New Hill’s Yield Criterion (1993)”, Journal of Materials Processing Technology, Vol.92-93, pp.429-432, 1999.
    4. Ceretti, E., C. Giardini and G. Maccarini,“Theoretical and Experimental Analysis of Non-axisymmetrical Deep Drawing”, Journal of Materials Processing Technology, Vol.54, pp.375-384, 1995.
    5. Cockcroft, M. G. and D. J. Latham,“Ductility and Workability of Metals”, J. Inst. Metals, Vol.96, pp.33, 1968.
    6. Danckert, Joachim and Wanheim, T.,“The Use of a Square Grid as an Alternative to a Circular Grid in the Determination of Strains”, Journal of Mechanical Working Technology, Vol.3, pp.5-15, 1979.
    7. Dinda, Subimal, Kenneth F. James, Stuart P. Keeler and Philip A. Stine,“How to Use Circle Grid Analysis for Die Tryout”, American Society for Metals, 1981.
    8. ERICHSEN Model 142-20 Operating Instructions, GMBH&CO.
    9. Fu, K. C., R.C. Gonzalez and C.S.G. Lee,“Robotics Control, Sensing, Vision, and Intelligence”, McGraw-Hill , 1987.
    10. Fukuda, M., K. Yamaguchi, N. Takakula and Y. Sakano, Journal Japan Social Technology Plasticity, Vol.15, pp.994, 1974.
    11. Ghosh, A. K.,“Plastic Flow Properties in Relation to Localized Necking in Sheet”, Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis, pp.287-312, 1978.
    12. Goodwin, G. M.,“Application of Strain Analysis on Sheet Metal Forming Problems in The Press Shop”, SAE Paper No. 680093, 1968.
    13. Gronostajski, J., A. Dolny and T. Sobis,“Formability of High Strength Steel and ARMCO at Different Strain Path”, 12th Biennial Congress, IDDRG, pp.39-48, 1982.
    14. Haddad, A., P. Vacher and R. Arrieux,“Numerical Determination of Forming Limit Diagrams of Orthotropic Sheets Using the ‘3G’ Theory of Plasticity”, Journal of Materials Processing Technology, Vol.92-93, pp.419-423, 1999.
    15. Hasek, V.,“Untersuchung und Theoretische Beschreibung Wichtiger Einflussgrossen auf das Grenzformanderungsschaubild”, Institute of Metal Forming Report, University of Stuttgart, West Germany, pp.213-220, 1978.
    16. Hecker, S. S.,“Simple Technique for Determining Forming Limit Curve”, SM1, pp.671-676, 1976.
    17. Hiam, J. and A. Lee,“Factors Influencing the Forming-Limit Curves of Sheet Steel”, Sheet Metal Industries, pp.631, May, 1978.
    18. Higashi, M., T. Mori, H. Taniguchi and J. Yoshimi,“Geometric Modeling for Efficient Evaluation of Press Forming Severity”, Proc. Symp. on Computer Modeling of the Sheet Metal Forming Process, Metallurgical Society, pp.21-35, 1985.
    19. Hill, R.,“On Discontinuous Plastic States, with Special Reference of Localized Necking in Thin Sheets”, J. Mech. Phys. Solids, Vol.1, pp.19-30, 1952.
    20. Hiller, M. J.,“Instability Strains in Plane Sheet Under Biaxial Stress”, J. of Applied Mechanics, Trans. of the ASME, pp.182-288, 1966.
    21. Hiwatashi, Shunji., Albert Van Bael, Paul Van Houtte, and Cristian Teodosiu,“Prediction of Forming Limit Strains under Strain-Path Changes: Application of an Anisotropic Model Based on Texture and Dislocation Structure”, International Journal of Plasticity, Vol.14., No.7, pp.647-669, 1998.
    22. Hosford, W. F., R. M. Caddell,“Metal Forming-Mechanics and Metallurgy”, Prentice-Hill, London, 1993.
    23. Hutchinson, J. W. and K. W. Neale,“Sheet Necking-II Time-Independent Behavior”, Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis, pp.127-150, 1978.
    24. Ishigaki, H.,“Deformation Analysis of Large Sized Panels in the Press Shop”, Proc. Symp. on Mechanics of Sheet Metal Forming , Plenum Press, pp.315-339, 1978.
    25. Kalpakjian, Serope,“Manufacturing Processes for Engineering Materials-3rd ed.”, Addison Wesley Longman, Inc., pp.384-454, 1997.
    26. Kanni Raj, A. and K. A. Padmanabhan,“Prediction of the Formability of Metastable Low Nickel Austenitic Stainless Steel Sheets”, Journal of Materials Processing Technology, Vol.94, pp.201-207, 1999.
    27. Keeler, S. P. and W. A. Backofen,“Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches”, Trans. ASM, Vol.56, pp.25, 1963.
    28. Kobayashi, M., Y. Kurisaki and N. Kawai,“Effect of Thickness on the Pure Stretchability of Aluminum Sheets”, Journal of Engineering for Industry, Trans. of the ASME, Vol.112, pp.340-345, Nov., 1990.
    29. Kobayashi, T., K. Murata and H. Ishigaki, J. Japan Soc. Tech. Plasticity, 10, pp.793, 1969.
    30. Kornonen, A. S.,“On the Theories of Sheet Metal Necking and Forming Limits”, J. Eng. Mater. Tech., Trans. of the ASME, Vol.100, pp.303-309, 1978.
    31. Lange, K.(Ed),“Handbook of Metal Forming”, McGraw-Hill, Chap. 18, 20, 1985.
    32. Laukonis, J. V. and A. K. Ghosh,“Effects of Strain Path Changes on the Formability of Sheet Metals”, Metall. Trans. A, Vol.9A, pp.1849-1856, 1978.
    33. Lee, D.,“Computer-Aided Control of Sheet Metal Forming Processes”, J. Met., Vol.34, pp.20-29, 1982.
    34. Lee, S. H. and S. Kobayashi,“The Effects of Strain Paths on the Stretching Limit Strains of Sheet Metal with Plannar Anisotropy”, Proc. 3rd North American Metalworking Research, pp.277-290, 1975.
    35. Leopold, J.,“Foundations of Micro-Forming”, Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.2, pp.883-888, Sep. 19-24, 1999.
    36. Lu, S.C., M.J. Saran and R.A. Miller,“Integration of CAD and FEA for concurrent engineering design of sheet stamping”, J. of Manufacturing Science and Engineering, Trans. of the ASME, v118, n3, pp.310-317, Aug., 1996.
    37. Marciniak, E. and K. Kuczynski,“Limit Strains in the Processes of Stretch Forming Sheet Metal”, Int. J. Mech. Sci., Vol.9, pp.609, 1967.
    38. Matsuoka, T. and C. Sudo,“The Effect of Strain Path on the Fracture Strain of Steel Sheets, The Sumitomo Search”, No.1, pp.71-80, 1969.
    39. Messner, M., et. Al.,“Size Effect in the FE-simulation of Micro-forming Process”, Journal of Materials Processing Technology, Vol.45, pp.371-376, 1994.
    40. Mingyao, Li and Abhijit Chandra,“Influence of Strain-rate Sensitivity on Necking and Instability in Sheet Metal Forming”, Journal of Materials Processing Technology, Vol.96, pp.133-138, 1999.
    41. Minh, H. V., R. Sowerby and J. L. Duncan,“Probabilistic Model of Limit Strain in Sheet Metal”, Int. J. Mech. Sci., Vol.17, pp.339 , 1975.
    42. Nakazima, K.,“Study on the Formability of Steel Sheets”, Yawata Technical Report, No.264, pp.141-154, 1954.
    43. Neugebauer, R., A. Schubert, J. Kadner and T. Burkhardt,“High Precision Embossing of Microparts”, Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.2, pp.921-926, Sep. 19-24, 1999.
    44. Norris, D. M., J. E. Reaugh, B. Moran and D. F. Quinones,“A Plastic Strain Mean-Stress Criterion for Ductile Fracture”, J. Engng. Mater. Tech., Vol.100, pp.279-286, 1978.
    45. Osakada, K. and M. Oyane, Trans. JSME , Vol.36, pp.1017 , 1970.
    46. Picart, P. and J.F. Michel,“Effects of Size and Texture on the Constitutive Behaviour for Very Small Components in Sheet Metal Forming”, Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.2, pp.921-926, Sep. 19-24, 1999.
    47. Rao, K. P. and W. M. Sing,“On the Prediction of the Effect of Process Parameters upon Forming Limit Strains in Sheet Metals”, Int. J. Mech. Sci., Vol.42, pp.451-472, 2000.
    48. Rasmussen, S. N.,“Theoretical Prediction of Strain Path Dependence of Limit Strains in Sheet Materials”, Annals of the CIRP, Vol.30/1, pp. 179-184, 1981.
    49. Raulea, L.V., L.E. Govaert and F.P.T. Baaijens, “Grain and Specimen Size Effects in Processing Metal Sheets”, Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.2, pp.939-944, Sep. 19-24, 1999.
    50. Rogers, David F. and J. Allan Adams,“Mathematical Elements for Computer Graphics”, McGraw-Hill Inc., 1989.
    51. Schoning, K.-V. von, M. Muller and P. Bogon,“Simulation Tools in Sheet Metal Forming-Today’s Possibilities, Tomorrow’s Demands”, Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.3, pp.2113-2130, Sep. 19-24, 1999.
    52. Sing, W. M. and K. P. Rao,“Study of Sheet Metal Failure Mechanisms Based on Stress-rate Condition”, Journal of Materials Processing Technology, Vol.67, pp.201-206, 1997.
    53. Swift, H. W.,“Plastic Instability under Plane Stress”, J. Mech. Phys. Solid, Vol.1, pp.1-18, 1952.
    54. Takahashi, A. and I. Okamoto,“Computer Aided Engineering in Body Stamping”, Annals of the CIRP, Vol.37, pp.569-577, 1988.
    55. Takahashi, A., I. Okamoto, T. Hiramatsu and N. Yamada,“Evaluation Methods of Press Forming Severity in CAD Application”, Proc. Symp. on Computer Modeling of the Sheet Metal Forming Process , Metallurgical Society, pp.37-50, 1985.
    56. Takuda, H., K. Mori and N. Hatta,“The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals”, Journal of Materials Processing Technology, Vol.95, pp.116-121, 1999.
    57. Takuda, H., K. Mori, H. Fujimoto and N. Hatta,“Prediction of Forming Limit in Bore-expanding of Sheet Metals Using Ductile Fracture Criterion”, Journal of Materials Processing Technology, Vol. 92-93, pp.433-438, 1999.
    58. Thomas, B. Stoughton,“A General Forming Limit Criterion for Sheet Metal Forming”, Int. J. Mech. Sci., Vol.42, pp.1-27, 2000.
    59. Thorpe, Warren R. and Nihill, Trevor J.,“Sheet-Metal Strain-Analysis System Based on a Square Reference-Grid”, Journal of Mechanical Working Technology, Vol.9, pp.5-20, 1984.
    60. Tiesler, N., U. Engel and M. Geiger,“Forming of Microparts-Effects of Miniaturization on Friction”, Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol.2, pp.889-894, Sep. 19-24, 1999.
    61. Toda, M.,“CAE in Stamping”, Journal of the Japan Society for Technology of Plasticity, Vol.30, No.337, pp.212-219, Feb., 1989.
    62. Toth, L. S., J. Hirsch and P. Van Houtte,“On the Role Texture Development in the Forming Limits of Sheet Metals”, Int. J. Mech. Sci., Vol.38, pp.1117-1126, 1996.
    63. Vacher, P., R. Arrieux and L. Tabourot,“Analysis of a Criterion of Deep Drawing Operation Capability for Thin Orthotropic Sheets”, Journal of Materials Processing Technology, Vol.78, pp.190-197, 1998.
    64. Venter, R., W. Johnson and M. C. deMalherbe.,“The Limit Strains of Inhomogeneous Sheet Metal in Biaxial Tension”, Int. J. Mech. Sci., Vol.13, pp.299-308, 1971.
    65. Vogel, J. H. and D. Lee,“An Automated Two-View Method for Determining Strain Distributions on Deformed Surfaces”, J. Materials Shaping Technology, Vol.6, No.4, pp.205-216, 1989.
    66. Welch, P. I., L. Ratke and M. Dahms,“Practical Considerations in Determining Material Parameters in the Tensile Test”, Ibid, pp.511-513, pp.517, 1985.
    67. Xu, Siguang. and Klaus J. Weinmann,“Effect of Deformation-Dependent Material Parameters on Forming Limit of Thin Sheets”, Int. J. Mech. Sci., Vol.42, pp.677-692, 2000.
    68. Yamaguchi, K., S. Nishimura, N. Takakura and M. Fukuda,“Thickness Dependence of Limit Strains in Sheet Metal Forming”, Proceedings of the 4th International Conference on Production Engineering Tokyo, pp.155-160, 1980.
    69. Yoshida, K. and K. Miyauchi,“The Growth of Plannar Directionality Due to Prestrain and the Re-formability of restrained Sheet Metals in Press Forming”, Scientific Paper of the Inst. of Physical and Chemical Research, Vol.61, No.4, pp.119-137, 1967.
    70. Yoshida, K.,“Trends in Forming Technology for Car Body in Japan”, Advanced Technology of Plasticity, Vol.1, pp.729-734, 1984.
    71. Yoshida, T., Hashimoto K., Usuda M.,“3-D FEM analysis of sheet metal deep drawability and stretchability-appilication of FEM analysis to research formability of sheet metals”Nippon Steel Technical Report, n67, pp.37-42, Oct., 1995.
    72. Zhao, L., R. Sowerby and M. P. Sklad,“A Theoretical and Experimental Investigation of Limit Strains in Sheet Metal Forming”, Int. J. Mech. Sci., Vol.38, pp.1307-1317, 1996.
    73. Zhou, Y. and K. W. Neale,“Prediction of Forming Limit Diagrams Using a Rate-sensitive Crystal Plasticity Model”, Int. J. Mech. Sci., Vol.37, pp.1-20, 1995.
    74. 于劍平,“軸對稱板金製程設計及缺陷診斷知識庫系統之研究”,碩士論文,成功大學機械工程研究所,1990年。
    75. 尹俊雄,“板金製品產品設計與可製造性知識庫系統研究”,碩士論文,成功大學機械工程研究所,1992年。
    76. 佘振華,“板金多道次成形之成形極限研究”,碩士論文,成功大學機械工程研究所,1989年。
    77. 李榮顯、許光城,“數位影像處理在板金成形極限圖建立之應用”,中國材料科學學會,民國78年年會論文集,第467-471頁。
    78. 李榮顯著,“塑性加工學”,三民書局股份有限公司,民國75年。
    79. 谷關敬三著,“照相蝕刻”,協志工業叢書,1973年。
    80. 周金龍,“異向性板金材料可成形性之研究”,碩士論文,成功大學機械工程研究所,1988年。
    81. 邱雲堯、陳佳萬、張安欣等譯,“機械製造(第三版)”,文京圖書有限公司,民國87年。
    82. 許光城,“尺度效應與表面狀況在細微結構件塑性成形製程參數之研究(Ⅰ)”,國科會專題研究計畫成果報告,計畫編號:NSC89-2212-E-151-023,2001年。
    83. 林文樹、劉曉嶺、王文樑、王良泉、梁銘儉、翁世樂、黃登淵、蔡幸甫著,“塑性加工學”,三民書局股份有限公司,民國76年。
    84. 林群福,“應用有限元素法於板金成形極限能量準則之建立及應變路徑之模擬”,碩士論文,成功大學機械工程研究所,1991年。
    85. 莊益彰,“應用能量準則於板金成形之可成形性評估系統之研究”,碩士論文,成功大學機械工程研究所,1995年。
    86. 莊偉倫,“應用有限元素法於板金成形極限之模擬分析”,碩士論文,成功大學機械工程研究所,1990年。
    87. 陳復國,“沖壓之CAE技術之應用”,機械工業雜誌,1993年5月號,第218-230頁。
    88. 莊達人著,“VLSI製程技術”,高立圖書有限公司,1998年。
    89. 張俊彥、鄭晃忠著,“積體電路製程及設備技術手冊”,中華民國電子材料與元件協會、產業科技發展協進會,1997年。
    90. 張智傑,“板金厚度對成形極限影響之研究”,碩士論文,成功大學機械工程研究所,1996年。
    91. 傅建堯,“板金可成形性分析之整合性系統發展”,碩士論文,成功大學機械工程研究所,1997年。
    92. 董福清,“應用微影方法於網格微細化之板金可成形性研究”,碩士論文,成功大學機械工程研究所,2000年。
    93. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚著,“機械材料學”,全華科技圖書股份有限公司,民國85年。
    94. 盧高賢,“板金成形技術的磨潤分析研究”,碩士論文,成功大學機械工程研究所,1990年。
    95. 蘇貴福、陳煌源、林宏仁編譯,“衝壓成形難易指南”,全華科技圖書股份有限公司,民國80年。

    下載圖示 校內:立即公開
    校外:2002-07-05公開
    QR CODE