簡易檢索 / 詳目顯示

研究生: 吳東郁
Wu, Tung-Yu
論文名稱: 奈米銀漿料應用於銅-銅塊材接合之剪切與疲勞性質研究
Study of Shear Test and Fatigue Test of Cu-Cu Contacts with Silver Nanoparticles Paste
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 3D積體電路封裝銀奈米顆粒熱壓剪切測試疲勞測試
外文關鍵詞: three-dimensional integrated circuit (3D-IC), silver nanoparticles, thermo-compression, shear test, fatigue test
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於3DIC接合材料中,銀奈米漿料具有製程溫度低、接觸電阻較小等優勢,但其接合強度僅11~17MPa [1]。為了提升其機械強度,本研究將銀-前驅物添加至銀奈米漿料中,並將漿料塗佈於銅塊材上以10 MPa、10 °C/分之升溫速率升溫至250 °C持溫30分鐘進行熱壓接合,再藉由剪切、疲勞測試瞭解添加銀-前驅物對於微結構與斷裂機制之影響,並與商用漿料(Advanced Nano Products, Silver Paste DGP-NO)進行相互比較。
    添加銀-前驅物後,接點剪切強度由14.0上升至31.2 MPa,銀顆粒相互燒結較緻密,並於銅銀介面形成似interlocking joint 之結構,導致剪切主要破斷位置由銅銀介面轉變為斷於銀漿料內部,形成"空孔-薄板斷裂"模式。若與商用漿料比較,添加銀-前驅物之漿料,具有高剪切強度(31.2>16.8MPa)及高疲勞循環次數(1087>873次),且具較高之形變量。由此結果可證實銀-前驅物之添加可改善燒結情形與介面擴散使剪切強度上升,並增加接點之延性而具有較佳的形變量。

    In this study, silver nanoparticle paste (synthesized by Professor Lien-Chung Hsu’s laboratory at National Cheng Kung University from a mixture of a silver precursor and silver nanoparticles) was applied in shear and fatigue tests of Cu-Cu contacts. After a thermal compression process, the microstructure of the paste became denser and the shear strength increased from 14.0 to 31.2 MPa in the presence of a silver precursor. The fracture surface was within the silver layer instead of at the copper-silver interface. Interlocking joints were observed at the copper-silver interface. The fractures propagated via a void sheet mechanism. Compared to a commercial paste (Advanced Nano Products, Silver Paste DGP-NO), the self-made paste had a higher shear strength (31.2 versus 16.8 MPa), better fatigue resistance (1087 versus 873 cycles), and larger strain. Adding a silver precursor thus improves sintering among silver nanoparticles and also leads to the formation of interlocking joints at the interface, which increase shear strength and strain.

    摘要............................................. I 致謝............................................. V 目錄............................................. VI 圖目錄........................................... X 表目錄........................................... XI 第一章 緒論....................................... 1 1-1 3D IC 封裝製程與應............................ 1 1-2 3D IC 封裝關鍵技術-銅對銅接合發展現況........... 2 1-3以奈米金屬漿料進行銅對銅之接合................... 4 第二章 理論基礎與文獻回顧.......................... 5 2-1 奈米效應與其應用.............................. 5 2-1-1 奈米效應................................... 5 2-1-2 銀奈米顆粒之發展近況與其應用................. 8 2-2 熱壓機制..................................... 10 2-2-1 熱壓機制(Thermo-Compression)............... 10 2-2-2 影響熱壓之因素.............................. 14 2-2-3 奈米顆粒之熱壓.............................. 17 2-3 剪切機構..................................... 21 2-3-1剪切之基本原理............................... 21 2-3-2 影響剪切之因素.............................. 22 2-3-3 破斷機構 (Fracture Mechanism).............. 24 2-4 疲勞破損..................................... 29 2-4-1 疲勞測試法................................. 29 2-4-2 疲勞裂縫成長機構............................ 29 2-4-3 影響材料疲勞性質之因素....................... 31 第三章 實驗流程與儀器設備.......................... 34 3-1 實驗用品..................................... 34 3-2 實驗流程..................................... 35 3-2-1 試片製備................................... 36 3-2-2 熱壓製程................................... 37 3-2-3 剪切測試................................... 38 3-2-4 疲勞測試................................... 38 3-3 量測與分析儀器................................ 43 3-3-1 熱重分析儀 (Thermogravimetry Analysis) (TGA)... ..................................................43 3-3-2 掃瞄式電子顯微鏡 (Scanning Electron Microscopy) (SEM)............................................ 43 3-3-3 能量散佈光譜儀(Energy Dispersive Spectroscopy) (EDS)............................................ 44 3-3-4 穿透式電子顯微鏡(Transmission Electron Microscopy)...................................... 45 第四章 實驗結果及討論.............................. 46 4-1 奈米漿料燒結過程之觀察......................... 47 4-1-1升溫過程-電阻之變化........................... 47 4-1-2升溫過程-奈米銀顆粒之微結構變化................ 49 4-2 銅-銀-銅接合之觀察............................. 57 4-2-1 剪切溫度、速率對接合強度之影響................ 57 4-2-2 破斷面分析.................................. 58 4-2-3 銅-銀介面分析............................... 59 4-2-4 In-situ 破斷過程與機制分析................... 60 4-2-5 壓力對於接合強度之影響....................... 61 4-3 銅-銀-銅接點之疲勞測試......................... 80 4-3-1 疲勞溫度、疲勞應變對接合強度之影響............. 80 4-3-2 破斷面分析.................................. 81 4-3-3 In-situ 疲勞破斷過程與機制分析............... 81 第五章 結論....................................... 92 參考文獻.......................................... 93

    1 Alarifi, H., Hu, A., Yavuz, M., Zhou, Y. N. Silver nanoparticle paste for low-temperature bonding of copper. Journal of Electronic Materials Vol. 40, 1394-1402 (2011).
    2 Hu, A., Guo, J., Alarifi, H., Patane, G., Zhou, Y., Compagnini, G., Xu, C. Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Applied Physics Letters Vol. 97, 153117 (2010).
    3 Ide, E., Angata, S., Hirose, A., Kobayashi, K. F. Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Materialia Vol. 53, 2385-2393 (2005).
    4 Kasthuri, J., Rajendiran, N. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance. Colloids and Surfaces B: Biointerfaces Vol. 73, 387-393 (2009).
    5 Zou, G., Yan, J., Mu, F., Wu, A., Ren, J., Hu, A., Zhou, Y. Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. Open Surface Science Journal Vol. 3, 70-75 (2011).
    6 Saraswat, K. C., Banerjee, K., Joshi, A., Kalavade, P., Kapur, P., Souri, S. in Solid-State Circuits Conference, 2000. ESSCIRC'00. Proceedings of the 26rd European. 406-414 (IEEE).
    7 Tang, Y.-S., Chang, Y.-J., Chen, K.-N. Wafer-level Cu–Cu bonding technology. Microelectronics Reliability Vol. 52, 312-320 (2012).
    8 Agarwal, R., Zhang, W., Limaye, P., Labie, R., Dimcic, B., Phommahaxay, A., Soussan, P. in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. 858-863 (IEEE).
    9 Chuang, H. Y., Yu, J. J., Kuo, M. S., Tong, H. M., Kao, C. R. Elimination of voids in reactions between Ni and Sn: A novel effect of silver. Scripta Materialia Vol. 66, 171-174 (2012).
    10 Schwarzbauer, H. Method of Securing Electronic Components to a Substrate. US4810672 (1989).
    11 Baumgartner, W., Fellinger, J. Method for Fastening Electronic Components to a Substrate Using a Film. US4856185 (1989).
    12 Kobelev, N., Soifer, Y. M., Andrievski, R., Gunther, B.
    94
    Microhardness and Elastic Properties of Nanocrystalline Silver. Nanostructured materials Vol. 2, 537-544 (1993).
    13 Moon, K.-S., Dong, H., Maric, R., Pothukuchi, S., Hunt, A., Li, Y., Wong, C. Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications. Journal of Electronic Materials Vol. 34, 168-175 (2005).
    14 Akada, Y., Tatsumi, H., Yamaguchi, T., Hirose, A., Morita, T., Ide, E. Interfacial Bonding Mechanism Using Silver Metallo-Organic Nanoparticles to Bulk Metals and Observation of Sintering Behavior. Materials transactions Vol. 49, 1537-1545 (2008).
    15 Hozoji, H., Morita, T., Sasaki, H. Method for Mounting an Electronic Part on a Substrate Using a Liquid Containing Metal Particles. US7393771B2 (2008).
    16 Fruh, C., Gunther, M., Rittner, M., Fix, A., Nowottnick, M. in Electronic System-Integration Technology Conference (ESTC), 2010 3rd. 1-5 (IEEE).
    17 Siow, K. S. Mechanical Properties of Nano-Silver Joints as Die Attach Materials. Journal of alloys and compounds Vol. 514, 6-19 (2012).
    18 Cheng, Y.-W., Siewert, T. A. Predicting Tensile Properties of The Bulk 96.5 Sn-3.5 Ag Lead-Free Solder. Journal of electronic materials Vol. 32, 535-540 (2003).
    19 Bai, J. G., Zhang, Z. Z., Calata, J. N., Lu, G.-Q. Low-Temperature Sintered Nanoscale Silver as a Novel Semiconductor Device-Metallized Substrate Interconnect Material. Components and Packaging Technologies, IEEE Transactions on Vol. 29, 589-593 (2006).
    20 Ide, E., Angata, S., Hirose, A., Kobayashi, K. F. in Materials science forum. 383-388 (Trans Tech Publ).
    21 Knoerr, M., Kraft, S., Schletz, A. in Electronics Packaging Technology Conference (EPTC), 2010 12th. 56-61 (IEEE).
    22 Knoerr, M., Schletz, A. in Integrated Power Electronics Systems (CIPS), 2010 6th International Conference on. 1-6 (IEEE).
    23 Morisada, Y., Nagaoka, T., Fukusumi, M., Kashiwagi, Y., Yamamoto, M., Nakamoto, M. A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles. Journal of electronic materials Vol. 39, 1283-1288 (2010).
    24 Tobita, M., Yasuda, Y., Ide, E., Ushio, J., Morita, T. Optimal Design
    95
    of Coating Material for Nanoparticles and Its Application for Low-Temperature Interconnection. Journal of Nanoparticle Research Vol. 12, 2135-2144 (2010).
    25 Jiu, J., Nogi, M., Sugahara, T., Tokuno, T., Araki, T., Komoda, N., Suganuma, K., Uchida, H., Shinozaki, K. Strongly Adhesive and Flexible Transparent Silver Nanowire Conductive Films Fabricated with a High-Intensity Pulsed Light Technique. Journal of Materials Chemistry Vol. 22, 23561-23567 (2012).
    26 Tokuno, T., Nogi, M., Jiu, J., Sugahara, T., Suganuma, K. Transparent Electrodes Fabricated via The Self-Assembly of Silver Nanowires Using a Bubble Template. Langmuir Vol. 28, 9298-9302 (2012).
    27 Tokuno, T., Nogi, M., Jiu, J., Suganuma, K. Hybrid Transparent Electrodes of Silver Nanowires and Carbon Nanotubes: a Low-Temperature Solution Process. Nanoscale research letters Vol. 7, 1-7 (2012).
    28 Kisiel, R., Mysliwiec, M., Atkinson, J. Thermal and Mechanical Properties of Sintered Ag Layers for Power Module Assembly. Microelectronics International Vol. 32 (2015).
    29 Kuczynski, G. C. Self-diffusion in sintering of metallic particles. AIME Trans Vol. 185, 169-178 (1949).
    30 Skrifvars, B.-J., Hupa, M., Backman, R., Hiltunen, M. Sintering mechanisms of FBC ashes. Fuel Vol. 73, 171-176 (1994).
    31 徐仁輝. 粉末冶金概論. (新文京開發, 2002).
    32 楊怡芳. 真空燒結溫度對 Cr-Si 合金微結構與機械性質影響之研究. 成功大學材料科學及工程學系學位論文 Vol. 2, 10-25 (2007).
    33 黃坤祥. 粉末冶金學. (中華民國粉末冶金協會, 2003).
    34 Kang, S.-J., Kaysser, W., Petzow, G., Yoon, D. Growth of Mo grains around Al 2 O 3 particles during liquid phase sintering. Acta Metallurgica Vol. 33, 1919-1926 (1985).
    35 Kawaguchi, T. Kuriyama, K. Relationship Between the Fine Ratio and Particle Size of Sintered Products in a Sinter Cake Sizing Process. Sumitomo Metals(Japan) Vol. 45, 6-15 (1993).
    96
    36 Thomas Guangyin Lei, Jesus Noel Calata, Guo-Quan Lu, M., IEEE, Xu Chen, a. S. L. Low-Temperature Sintering of Nanoscale Silver Paste for Attaching Large-Area (>100mm2) Chips. IEEE Transactions on Components and Packaging Technology Vol. 33, 1521-3331 (2010).
    37 Erol, M., Demirler, U., Küçükbayrak, S., Ersoy-Meriçboyu, A., Öveçoğlu, M. Characterization investigations of glass-ceramics developed from Seyitömer thermal power plant fly ash. Journal of the European Ceramic Society Vol. 23, 757-763 (2003).
    38 Yoo, J. G., Jo, Y. M. Finding the optimum binder for fly ash pelletization. Fuel processing technology Vol. 81, 173-186 (2003).
    39 Shlomo Magdassi, Michael Grouchko, Oleg Berezin, Kamyshny, A. Triggering the Sintering of Silver Nanoparticles at Room Temperature. American Chemical Society NANO Vol. 4, 1943-1948 (2010).
    40 Michael Grouchko, Inna Popov, Vladimir Uvarov, Kamyshny, S. M. a. A. Coalescence of Silver Nanoparticles at Room Temperature: Unusual Crystal Structure Transformation and Dendrite Formation Induced by Self-Assembly. American Chemical Society Vol. 25, 2501-2503 (2009).
    41 Dr. Guo-Quan Lu, C., Boroyevich, D. D., Corcoran, D. S. G., Dr. William T. Reynolds, J., Wyk, D. J. D. v. Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection. Center for Power Electronics Systems &Center for Microelectronics, Optoelectronics, and Nanotechology &Department of Materials Science and Engineering Virginia Polytechnic Institute and State University Vol. 1, 22-26 (2005).
    42 Hibbeler, R. C. Mecánica vectorial para ingenieros: dinámica. Vol. 1 (Pearson Educación, 2004).
    43 鲁守银 et al. 變電站設備巡檢機器人的研制. 電力系統自動化 Vol. 30, 94-98 (2006).
    44 Li, X., Chen, G., Chen, X., Lu, G‐Q., Wang, L., Mei, Y‐H. Mechanical property evaluation of nano‐silver paste sintered joint using lap‐shear test. Soldering & Surface Mount Technology Vol. 24,
    97
    120-126 (2012).
    45 Rogers, H. The Tensile Fracture of Ductile Metals. AIME trans Vol. 218, 498-506 (1960).
    46 Center, N. E. R. Fracture Toughness, <https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Mechanical/FractureToughness.htm> (2001).
    47 Cottrell, A., Hull, D. Extrusion and intrusion by cyclic slip in copper. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences Vol. 242, 211-213 (1957).
    48 袁成華. 鈦鉬合金熱處裡後疲勞性質之研究. 成功大學材料科學及工程學系學位論文, 1-86 (2005).

    無法下載圖示 校內:2020-08-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE