簡易檢索 / 詳目顯示

研究生: 劉紋君
Liu, Wen-Chun
論文名稱: B 型肝炎病毒變異株與其臨床意義之相關研究─針對病毒基因型、病毒演化及病毒基因突變率與病程之相關性進行探討
The study of hepatitis B virus variants and their clinical significance─ focusing on viral genotypes, viral evolution, and the relationship between mutation rate of viral genome and disease progression
指導教授: 張定宗
Chang, Ting-Tsung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 126
中文關鍵詞: 即時PCR熔解曲線分析基因亞型血清轉換突變率基因型B型肝炎病毒
外文關鍵詞: subgenotype, melting curve analysis, real-time PCR, genotype, Hepatitis B virus, seroconversion, mutation rate
相關次數: 點閱:263下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • B型肝炎病毒(HBV)擁有放鬆、環形且不完整雙股,大約為3200個核苷酸的DNA基因體。目前可基於整個基因體序列差異到達8%以上的原則,而分為基因型A~H八型。大部分的B型肝炎病毒基因型具有地理上分布的獨特性,並且病毒基因型會影響慢性B型肝炎病臨床的表現。我們建立了由NCBI擷取的370株全長序列的HBV資料庫,並使用自行設計的資料庫連結軟體及Excel的公式作運算,去找出可以清楚分離HBV基因型A~G的合適設計點。我們設計了: (1)雜合式引子/探針組,藉由單一上機步驟的即時PCR及熔解曲線分析,同時完成病毒定量及基因型分組(ACDG 與 BEF兩群組)。在第二輪的即時PCR及熔解曲線分析中,再利用後續的引子/探針組,分別在ACDG及BEF群組中,鑑定出其所屬基因型;我們也設計了 (2)基因型專一性引子複合式PCR組(N3/ACDG),來輔助ACDG群組後續的分型鑑定(替代ACDG後續分型的探針)。在另一方面也設計了 (3)一套獨立的基因型專一性引子複合式PCR法(N1/ABFG及N2/CDE組),用以直接鑑定HBV A~G七個基因型。在429個臨床檢體(表面抗原及HBV DNA皆為陽性)測試的結果中,我們以自己設計的三套方法和前人發表的1998-RFLP法及2001-基因型專一性引子法作比較。各方法比較後顯示: (1)在熔解曲線分析法中,第一輪的即時PCR反應能夠同時定性與定量,定量敏感度為103~1013 copies/mL,同時能以不同的Tm值來區分基因型為ACDG及BEF兩群。第二輪的即時PCR暨熔解曲線分析則能將ACDG或BEF群作後續完整的分型。 (2)用來替代ACDG後續分型探針的N3/ACDG基因型專一性引子組,在ACDG群組後續的分型鑑定上明顯有效許多,並可將準確度提高。 (3)獨立的基因型專一性引子複合式PCR法(N1/ABFG及N2/CDE組)也能成功並正確地鑑定出大部分檢體的基因型,準確率為92.5%。 (4)在前人發表方法中,1998-RFLP及2001-專一性引子法的準確率分別可達到90.6%及47.8%。簡而言之,我們成功地設立了有效的HBV基因型分型方法,精準地鑑定出A~G七型的HBV基因型,具有高偵測敏感度、同時能定量病毒及高準確率的特性。此外,B型肝炎病毒基因型B是分布於亞洲最主要的基因型之ㄧ,根據演化樹譜分析,我們發現基因型B可以在被細分為基因亞型B1到B5,其中基因亞型B1、B3、B4與B5具有地理上的獨特性,分別只分布在日本、印尼、越南以及菲律賓,此五個基因亞型的病毒序列也具有相當特異性的部份,並且B2、B3、B4以及B5的Core基因與基因型C的Core基因發生序列重組。我們利用基因亞型的地理位置分佈、基因亞型間的序列差異度勾畫出B基因亞型的演化地理分布關係網絡,提供B基因亞型在亞洲地理上的演化關係。病毒的突變以及演化的速率與臨床病程有關,根據病人的臨床的表現,本研究納入53位臨床未用藥的病人,將病人依長達一年以上追蹤期間病毒量的起伏,分為二種型態,分別是穩定型 (stationary pattern)以及起伏型(fluctuated pattern)。其中起伏型的類別依照追蹤期間是否達到血清轉換,再被細分為血清轉換組與無血清轉換二組。我們依此分類,比較各型病毒序列變異以及突變速率的差異。根據結果顯示,起伏型的病毒突變速率比穩定型快,且在病毒核心區域以及核心調控區域達到統計上的意義(P<0.05)。與血清轉換組比較,對於未達到血清轉換的病人而言,在病毒量急劇上升時期病毒核心蛋白的突變率,有意義地高於隨後病毒量下降時期的突變率。 在絕大多數核心蛋白的突變,起伏型與穩定型差異是有意義的。同時這些突變包含許多hot-spots且已被證實與逃脫免疫的機制有關。這些發現將可能有助於未來進一步闡釋宿主與病毒間的相互作用機制。

    Hepatitis B virus (HBV) has a relaxed-circular, partially double stranded DNA genome of approximately 3200 nucleotides and has been classified into eight genotypes (A–H) based on an inter-group divergence of more than 8% in the entire genomic sequence. It has been shown that most HBV genotypes have distinct geographical distributions and that the viral genotypes may influence the clinical outcomes of chronic HBV infection. We analyzed 370 HBV full-length genomes containing all genotypes from NCBI, and used database-associated software designed by ourselves and Excel formulae to search for appropriate target sites for differentiation of genotypes A–G clearly. We designed (1) a hybridization primer/probe set for simultaneous HBV DNA quantification and differentiation of HBV genotypes into two groups (ACDG vs. BEF) by a single round real-time PCR procedure associated with melting curve analysis. Individual genotype in either ACDG- or BEF-groups can be further distinguished by another primer/probe set in a second round of real-time PCR reaction; we also designed (2) an improved multiplex PCR assay with genotype-specific primers (N3/ACDG set) to assist further differentiation of ACDG group instead of original ACDG-differentiated probe set. On the other hand, we designed (3) an independent method of multiplex PCR with genotype-specific primers assay (N1/ABFG and N2/CDE sets) to differentiate genotype A~G directly. To compare the assay accuracy of our established methods with RFLP and genotype-specific primers methods published in 1998 and 2001, 429 clinical samples which showed positive HBsAg and HBV DNA were examined. The comparisons showed that: (1) In melting curve analysis, the first round real-time PCR could quantify HBV DNA in a well linear regression range from 103 to 1013 copies/mL and separate genotypes ACDG from BEF with different melting temperatures. Then the second round of real-time PCR could identify the individual genotype in either ACDG- or BEF-group. (2) The genotype-specific primers set (N3/ACDG) used in multiplex PCR instead of ACDG-separating probe used in the second round real-time PCR were effective in distinguishing individual genotype in the ACDG group. (3) The genotype-specific primers (N1/ABFG & N2/CDE) used in multiplex PCR succeeded in differentiating most samples with 92.5% accuracy. (4) In the previous research, RFLP (1998) and genotype-specific primers (2001) assays could reach 90.6% and 47.8% of accuracy, respectively. In summary, we successfully established effective genotyping methods for HBV by real-time PCR with melting curve analysis and multiplex PCR with genotype-specific primers assay. The experimental protocol and methological designs reported herein will be extensively favorable for application in clinical diagnosis or genotype related researches with high sensitivity of detection, simultaneous HBV DNA quantification, and improved accuracy. In addition, the genotype B of HBV is the major genotype in Asia. We found the genotype B could be classified into five subgenotypes, and named in HBV/B1, B2, B3, B4 and B5 according to phylogenetic tree and sequence diversity. The subgenotypes B1, B3, B4 and B5 had geographic uniqueness and were distinctively distributed in Japan, Indonesia, Vietnam and Philippine. Some nucleotide and amino acid sequences of the five subgenotypes were also distinctive. Furthermore, the core gene of subgenotypes B2, B3, B4 and B5 recombined with that of genotype C. We clearly drew a phylogeography network to point out the evolution history of HBV genotype B in Asia by phylogenetic tree, geography and diversity. The evolution rate was correlated with mutation rate of virus. On the other hand, the mutation and evolution rates of the virus were correlated with clinical process. In this study, we also enrolled 53 patients and classified them into two patterns according to their viral kinetics during more than one year follow-up without antiviral treatment, i.e. stationary and fluctuated viral kinetic patterns. The patients with fluctuated pattern were further categorized into seroconversion and non-seroconversion groups depending on whether achieving seroconversion or not during the follow-up period. According to the classification, we compared viral nucleotide and amino acid sequence substitutions and their mutation rates among different viral kinetic patterns. In the results, the mutation rate of fluctuated pattern was higher than that of stationary pattern, especially in the core gene and regulatory element of core (P<0.05). As comparing with seroconversion group, non-seroconversion group had significantly higher mutation rate of viral core protein during viral DNA breakthrough than that during viral decline later. The majority of core protein mutations, which contained many hot-spots correlated with escaping immune response, were significantly different between fluctuated pattern and stationary pattern. These findings will be probably helpful to further illustrate the mechanism of host-virus interaction in the future.

    Contents Abstract (in Chinese)------------------------------------------------------------I Abstract (in English)----------------------------------------------------------III Index----------------------------------------------------------------------------VI Figure / Table index------------------------------------------------------------X Introduction----------------------------------------------------------------------1 Aim and study strategy--------------------------------------------------------12 Materials and methods--------------------------------------------------------13 1. To develop an efficient PCR-based method with quantification and genotyping of HBV genotypes A to G in one-tube reaction. 13 1.1 Study subjects and samples 13 1.2 Principle of real-time PCR genotyping by melting curve analysis 13 1.3 Real-time PCR amplification of HBV using Lightcycler 14 1.4 Ouantification of HBV DNA by real-time PCR 15 1.5 Alternative genotyping of HBV genotypes A, C, D, and G by type-specific multiplex PCR 15 1.6 Direct sequencing analyses 16 1.7 Statistical methods 16 2. To develop an efficient multiplex PCR method to differentiate HBV genotypes A to G in one step. 18 2.1 Patients 18 2.2 Principles of multiplex PCR genotyping 18 2.3 HBV genotyping by multiplex PCR 19 2.4 Direct sequencing analyses 19 3. To analyze the phylogeography of the subgenotypes of HBV by the phylogenetic analysis and HBV distribution 21 3.1 HBV Isolates From Patients and GenBank 21 3.2 DNA extraction, amplification, and sequencing 21 3.3 Phylogenetic analysis. 22 4. To compare mutation rate, nucleotide and amino acid sequence changes and protein structure of HBV in natural course between patients with stationary and fluctuated viral kinetic patterns 24 4.1 Patients 24 4.2 Viral kinetic patterns of HBV 24 4.3 DNA extraction, amplification, and sequencing 25 4.4 HBV genotyping and phylogenic analysis 25 4.5. Protein analysis 26 4.6 Statistical analysis 26 Results----------------------------------------------------------------------------28 1. To develop an efficient PCR-based method with quantification and genotyping of HBV genotypes A to G in one-tube reaction. 28 1.1 Quantification of HBV by set 1 amplicon (ACDG/BEF set) 28 1.2 Genotyping by melting curve analysis (MCA) 28 1.3 Typing of genotypes A, C, D, and G by multiplex PCR 29 1.4 Detection of HBV mixed infections with melting curve analysis 29 2. To develop an efficient multiplex PCR method to differentiate HBV genotypes A to G in one step. 31 2.1 Differentiation of 7 genotypes by one step multiplex PCR with type specific primers 31 2.2 Detection of HBV mixed infections with multiplex PCR 31 2.3 Accuracy of the genotyping methods 31 3. To analyze the phylogeography of the subgenotypes of HBV by the phylogenetic analysis and HBV distribution 32 3.1 Phylogenetic analysis and geographical distribution with five Subgenotypes of Genotype B. 32 3.2 Nucleotide divergence among HBV/B1-B5 and other genotypes 33 3.3 Comparison of the nucleotide sequences of cis-acting elements of HBV/B1-B5 and other genotypes 34 3.4 Comparison of amino acid sequences of HBV/B1-B5 and other genotypes 34 4. To compare mutation rate, nucleotide and amino acid sequence changes and protein structure of HBV in natural course between patients with stationary and fluctuated viral kinetic patterns 36 4.1 Comparison of characteristics of patients with stationary and fluctuated viral kinetic patterns 36 4.2 Comparison of HBV mutation rate of three phases between stationary and fluctuated viral kinetic patterns 36 4.3 Comparing mutation rates of nucleotides and amino acids in different phases between stationary and fluctuated viral kinetic patterns 38 4.4 Comparison of HBV mutation rate of three phases between seroconversion and non-seroconversion groups in fluctuated viral kinetic pattern. 38 4.5 Hot spot expression of HBV core protein among patients with different viral kinetic pattern 39 4.6 Structure characteristics of HBV core protein in patients with stationary and fluctuated viral kinetic patterns 40 4.7 Construction changes at the viral peak to benefit the viral exist. 40 Discussion------------------------------------------------------------------------42 Reference-------------------------------------------------------------------------55 Figures--------------------------------------------------------------------------67 Tables-----------------------------------------------------------------------------93 Author-----------------------------------------------------------------------------------------125 Figure / Table contents Figure 1. The primers and hybridization probes on melting curve analysis------67 Figure 2. Quantification of the virus by real-time PCR with Set 1-----------------69 Figure 3. The representative results for melting curve analysis of clinical samples with genotypes A to G ----------------------------------------------------------71 Figure 4. The determination of HBV mixed infection by the melting curve analysis ----------------------------------------------------------------------------73 Figure 5. The electrophoresis results of multiplex PCR for identifying genotype A, C, D and G --------------------------------------------------------------------74 Figure 6. Strategy for genotyping of genotype A to G by multiplex PCR using type-specific primers -----------------------------------------------------------75 Figure 7. The electrophoresis results of multiplex PCR for identifying genotypes A to G.-----------------------------------------------------------------------------76 Figure 8. Complete genome and preC plus core gene of neighbor-joining phylogenetic HBV tree ---------------------------------------------------------78 Figure 9. Minimum spanning network of complete genome sequences of HBV subgenotypes B1-B5--------------------------------------------------------------82 Figure 10. Characteristic presentation of stationary and fluctuated viral kinetic patterns of HBV -----------------------------------------------------------------83 Figure 11. Comparing mutation rates of nucleotide and amino acids in different phases between stationary and fluctuated viral kinetic patterns------85 Figure 12. Comparing of mutation rate from baseline to final point between seroconversion group and non-seroconversion group in fluctuated viral kinetic pattern ------------------------------------------------------------87 Figure 13. Comparing of nucleotide mutation sites of 24 complete HBV genomes from basline to final point ----------------------------------------------------89 Figure 14. Comparing mutation rates of core gene in different phases between stationary and fluctuated viral kinetic patterns including seroconversion and non-seroconversion groups --------------------------90 Figure 15. Mutated hot spots of core protein from baseline to final point among different viral kinetic patterns -----------------------------------------------91 Figure 16. Comparing consistence of mutated amino acids of core protein during different phases to those at final points between seroconversion and non-seroconversion groups ---------------------------------------------------92 Table 1. Sequence variations of A–G genotypes at signature genetic polymorphisms of three sets of amplicons in 367 full-length viral isolates-------------------------------------------------------------------------------93 Table 2. PCR primers and probes in the amplicons used for HBV quantification and genotyping of genotype A to G with Real-time PCR and Two-step Melting Curve Analysis---------------------------------------------------------94 Table 3. Type specific PCR primers in the amplicon used for typing of HBV genotype A, C, D and G by multiplex PCR -------------------------------96 Table 4. Sequence variations of A–G genotypes at signature genetic polymorphisms of amplicons designed for two-step meltimg curve analysis in 367 full-length viral isolates -----------------------------------97 Table 5. Comparing the accuracy of HBV genotyping method -----------------99 Table 6. The type specific PCR primers in the amplicon used for HBV genotyping of genotypes A to G by multiplex PCR ---------------------100 Table 7. Sequence variations of A–G genotypes at signature genetic polymorphisms of amplicons designed for multiplex PCR pcr in 367 full-length viral isolates -------------------------------------------------------103 Table 8. Geographic distribution of 479 HBV isolates according to genotypes A to G -------------------------------------------------------------------------------106 Table 9. Mean percentage of nucleotide divergence over the complete genome and core gene (containing precore region) among 479 human HBV isolates with a woolly monkey hepatitis virus isolate as the out group------------------------------------------------------------------------------107 Table 10. Comparison of the nucleic acid sequences of the cis-acting elements of HBV/B1-B5 isolates with other HBV genotypes -------------------------108 Table 11. Characteristic mutations within the cis-acting regulatory elements found in the five subgenotype of HBV/B ---------------------------------111 Table 12. Comparison of amino acid residues of four ORFs of HBV/B1–B5 isolates with other HBV genotypes ----------------------------------------113 Table 13. Characteristic mutations within amino acids of each HBV/B subgenotype---------------------------------------------------------------------117 Table 14. Genograpgic distribution of 168 HBV/B isolates according to their subgenotypes --------------------------------------------------------------------119 Table 15. The primers used for full-length and second-round PCR and for sequencing -----------------------------------------------------------------------120 Table 16. Comparison of characteristics of patients with stationary and fluctuated viral kinetic patterns --------------------------------------------121 Table 17. The list of core protein hotspots among patients with different viral kinetic pattern ------------------------------------------------------------------122

    Reference
    Akahane, Y., Yamanaka, T., Suzuki, H. Sugai, Y. Tsuda, F. Yotsumoto, S. Omi, S. Okamoto, H. Miyakawa, Y. Mayumi, M. (1990). Chronic active hepatitis with hepatitis B virus DNA and antibody against e antigen in the serum. Disturbed synthesis and secretion of e antigen from hepatocytes due to a point mutation in the precore region. Gastroenterology 99, 1113-1119.

    Arauz-Ruiz, P., Norder, H., Robertson, B. H. & Magnius, L. O. (2002). Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America. J Gen Virol 83, 2059-2073.

    Aritomi, T., Yatsuhashi, H., Fujino, T., Yamasaki, K., Inoue, O., Koga, M., Kato, Y. & Yano, M. (1998). Association of mutations in the core promoter and precore region of hepatitis virus with fulminant and severe acute hepatitis in Japan. J Gastroenterol Hepatol 13, 1125-1132.

    Asahina, Y., Enomoto, N., Ogura, Y., Kurosaki, M., Sakuma, I., Izumi, N., Marumo, F. & Sato, C. (1996). Sequential changes in full-length genomes of hepatitis B virus accompanying acute exacerbation of chronic hepatitis B. J Hepatol 25, 787-794.

    Bahn, A., Gerner, P., Martine, U., Bortolotti, F. & Wirth, S. (1997). Detection of different viral strains of hepatitis B virus in chronically infected children after seroconversion from HBsAg to anti-HBs indicating viral persistence. J Hepatol 27, 973-978.

    Bartholomeusz, A. & Schaefer, S. (2004). Hepatitis B virus genotypes: comparison of genotyping methods. Rev Med Virol 14, 3-16.

    Bertoletti, A., Ferrari, C., Fiaccadori, F., Penna, A., Margolskee, R., Schlicht, H. J., Fowler, P., Guilhot, S. & Chisari, F. V. (1991). HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen. Proc Natl Acad Sci U S A 88, 10445-10449.

    Blum, H. E. (1993). [Chronic viral hepatitis: current diagnosis and therapy]. Schweiz Rundsch Med Prax 82, 501-505.

    Bowyer, S. M., van Staden, L., Kew, M. C. & Sim, J. G. (1997). A unique segment of the hepatitis B virus group A genotype identified in isolates from South Africa. J Gen Virol 78 ( Pt 7), 1719-1729.

    Bozkaya, H., Akarca, U. S., Ayola, B. & Lok, A. S. (1997). High degree of conservation in the hepatitis B virus core gene during the immune tolerant phase in perinatally acquired chronic hepatitis B virus infection. J Hepatol 26, 508-516.

    Brunetto, M. R., Oliveri, F., Rocca, G., Criscuolo, D., Chiaberge, E., Capalbo, M., David, E., Verme, G. & Bonino, F. (1989). Natural course and response to interferon of chronic hepatitis B accompanied by antibody to hepatitis B e antigen. Hepatology 10, 198-202.

    Brunetto, M. R., Giarin, M. M., Oliveri, F. Saracco, G.Barbera, C.Parrella, T.Abate, M. L.Chiaberge, E.Calvo, P. L. Manzini, P. (1991). Wild-type and e antigen-minus hepatitis B viruses and course of chronic hepatitis. Proc Natl Acad Sci U S A 88, 4186-4190.

    Brunetto, M. R., Rodriguez, U. A. & Bonino, F. (1999). Hepatitis B virus mutants. Intervirology 42, 69-80.

    Buckwold, V. E., Xu, Z., Chen, M., Yen, T. S. & Ou, J. H. (1996). Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. J Virol 70, 5845-5851.

    Carman, W. F., Jacyna, M. R., Hadziyannis, S., Karayiannis, P., McGarvey, M. J., Makris, A. & Thomas, H. C. (1989). Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection. Lancet 2, 588-591.

    Chen, C. H., Lee, C. M., Lu, S. N., Changchien, C. S., Eng, H. L., Huang, C. M., Wang, J. H., Hung, C. H. & Hu, T. H. (2005). Clinical significance of hepatitis B virus (HBV) genotypes and precore and core promoter mutations affecting HBV e antigen expression in Taiwan. J Clin Microbiol 43, 6000-6006.

    Chen, C. J., Yang, H. I., Su, J., Jen, C. L., You, S. L., Lu, S. N., Huang, G. T. & Iloeje, U. H. (2006). Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. Jama 295, 65-73.

    Chen, J. J., Gershon, A. A., Li, Z. S., Lungu, O. & Gershon, M. D. (2003). Latent and lytic infection of isolated guinea pig enteric ganglia by varicella zoster virus. J Med Virol 70 Suppl 1, S71-78.

    Daikoku, M., Nakata, K., Hamasaki, K., Ido, A., Nakao, K., Kato, Y., Koga, M., Yano, M. & Nagataki, S. (1995). Analysis of wild-type and e antigen-defective hepatitis B viruses during the course of a short-term corticosteroid therapy in chronic hepatitis B. J Med Virol 47, 184-188.

    Das, K., Xiong, X., Yang, H., Westland, C. E., Gibbs, C. S., Sarafianos, S. G. & Arnold, E. (2001). Molecular modeling and biochemical characterization reveal the mechanism of hepatitis B virus polymerase resistance to lamivudine (3TC) and emtricitabine (FTC). J Virol 75, 4771-4779.

    Devarbhavi, H. C., Cohen, A. J., Patel, R., Wiesner, R. H., Dickson, R. C. & Ishitani, M. B. (2002). Preliminary results: outcome of liver transplantation for hepatitis B virus varies by hepatitis B virus genotype. Liver Transpl 8, 550-555.

    Ding, X., Mizokami, M., Yao, G., Xu, B., Orito, E., Ueda, R. & Nakanishi, M. (2001). Hepatitis B virus genotype distribution among chronic hepatitis B virus carriers in Shanghai, China. Intervirology 44, 43-47.

    Ehata, T., Omata, M., Yokosuka, O., Hosoda, K. & Ohto, M. (1991). Amino acid residues of core region of hepatitis B virus. Asymptomatic carriers versus patients with liver disease. J Gastroenterol Hepatol 6, 292-296.

    Ehata, T., Omata, M., Chuang, W. L., Yokosuka, O., Ito, Y., Hosoda, K. & Ohto, M. (1993). Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis. J Clin Invest 91, 1206-1213.

    Excoffier, L. & Smouse, P. E. (1994). Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136, 343-359.

    Ferrari, C., Bertoletti, A., Penna, A. Cavalli, A.Valli, A.Missale, G.Pilli,M.Fowler, P.Giuberti, T.Chisari, F. V. (1991). Identification of immunodominant T cell epitopes of the hepatitis B virus nucleocapsid antigen. J Clin Invest 88, 214-222.

    Friedt, M., Gerner, P., Lausch, E., Trubel, H., Zabel, B. & Wirth, S. (1999). Mutations in the basic core promotor and the precore region of hepatitis B virus and their selection in children with fulminant and chronic hepatitis B. Hepatology 29, 1252-1258.

    Fukuda, R., Mohammad, R., Hamamoto, S., Ishimura, N., Ishihara, S., Akagi, S., Watanabe, M. & Kinoshita, Y. (2001). Clinical relevance of precore and basal core promoter variants of hepatitis B virus during natural hepatitis B e antigen seroconversion may be overstated. J Pediatr Gastroenterol Nutr 33, 301-306.

    Ghany, M. G., Ayola, B., Villamil, F. G., Gish, R. G., Rojter, S., Vierling, J. M. & Lok, A. S. (1998). Hepatitis B virus S mutants in liver transplant recipients who were reinfected despite hepatitis B immune globulin prophylaxis. Hepatology 27, 213-222.

    Girones, R., Cote, P. J., Hornbuckle, W. E., Tennant, B. C., Gerin, J. L., Purcell, R. H. & Miller, R. H. (1989). Complete nucleotide sequence of a molecular clone of woodchuck hepatitis virus that is infectious in the natural host. Proc Natl Acad Sci U S A 86, 1846-1849.

    Grandjacques, C., Pradat, P., Stuyver, L., Chevallier, M., Chevallier, P., Pichoud, C., Maisonnas, M., Trepo, C. & Zoulim, F. (2000). Rapid detection of genotypes and mutations in the pre-core promoter and the pre-core region of hepatitis B virus genome: correlation with viral persistence and disease severity. J Hepatol 33, 430-439.

    Gunther, S., Li, B. C., Miska, S., Kruger, D. H., Meisel, H. & Will, H. (1995). A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J Virol 69, 5437-5444.

    Gunther, S., Piwon, N. & Will, H. (1998). Wild-type levels of pregenomic RNA and replication but reduced pre-C RNA and e-antigen synthesis of hepatitis B virus with C(1653) --> T, A(1762) --> T and G(1764) --> A mutations in the core promoter. J Gen Virol 79 ( Pt 2), 375-380.

    Hendricks, D. A., Stowe, B. J., Hoo, B. S., Kolberg, J., Irvine, B. D., Neuwald, P. D., Urdea, M. S. & Perrillo, R. P. (1995). Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay. Am J Clin Pathol 104, 537-546.

    Ho, S. K., Chan, T. M., Cheng, I. K. & Lai, K. N. (1999). Comparison of the second-generation digene hybrid capture assay with the branched-DNA assay for measurement of hepatitis B virus DNA in serum. J Clin Microbiol 37, 2461-2465.

    Holmes, E. C. (2004). The phylogeography of human viruses. Mol Ecol 13, 745-756.

    Huy, T. T., Ushijima, H., Quang, V. X., Win, K. M., Luengrojanakul, P., Kikuchi, K., Sata, T. & Abe, K. (2004). Genotype C of hepatitis B virus can be classified into at least two subgroups. J Gen Virol 85, 283-292.

    Iloeje, U. H., Yang, H. I., Su, J., Jen, C. L., You, S. L. & Chen, C. J. (2006). Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology 130, 678-686.

    Jung, M. C., Diepolder, H. M., Spengler, U. Wierenga, E. A.Zachoval, R.Hoffmann, R. M.Eichenlaub, D.Frosner, G.Will, H.Pape, G. R. (1995). Activation of a heterogeneous hepatitis B (HB) core and e antigen-specific CD4+ T-cell population during seroconversion to anti-HBe and anti-HBs in hepatitis B virus infection. J Virol 69, 3358-3368.

    Kao, J. H., Chen, P. J., Lai, M. Y. & Chen, D. S. (2000a). Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 118, 554-559.

    Kao, J. H., Wu, N. H., Chen, P. J., Lai, M. Y. & Chen, D. S. (2000b). Hepatitis B genotypes and the response to interferon therapy. J Hepatol 33, 998-1002.

    Kao, J. H., Chen, P. J., Lai, M. Y. & Chen, D. S. (2001). Acute exacerbations of chronic hepatitis B are rarely associated with superinfection of hepatitis B virus. Hepatology 34, 817-823.

    Kao, J. H., Chen, P. J., Lai, M. Y. & Chen, D. S. (2002). Genotypes and clinical phenotypes of hepatitis B virus in patients with chronic hepatitis B virus infection. J Clin Microbiol 40, 1207-1209.

    Kao, J. H., Chen, P. J., Lai, M. Y. & Chen, D. S. (2003). Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology 124, 327-334.

    Kato, H., Orito, E., Gish, R. G. Bzowej, N.Newsom, M.Sugauchi, F.Suzuki, S.Ueda, R.Miyakawa, Y.Mizokami, M. (2002). Hepatitis B e antigen in sera from individuals infected with hepatitis B virus of genotype G. Hepatology 35, 922-929.

    Kidd-Ljunggren, K., Miyakawa, Y. & Kidd, A. H. (2002). Genetic variability in hepatitis B viruses. J Gen Virol 83, 1267-1280.

    Kimbi, G. C., Kramvis, A. & Kew, M. C. (2004). Distinctive sequence characteristics of subgenotype A1 isolates of hepatitis B virus from South Africa. J Gen Virol 85, 1211-1220.

    Kobayashi, M., Arase, Y., Ikeda, K. Tsubota, A.Suzuki, Y.Saitoh, S.Suzuki, F.Akuta, N.Someya, T.Matsuda, M.Sato, J.Kumada, H. (2002). Clinical characteristics of patients infected with hepatitis B virus genotypes A, B, and C. J Gastroenterol 37, 35-39.

    Kramvis, A., Weitzmann, L., Owiredu, W. K. & Kew, M. C. (2002). Analysis of the complete genome of subgroup A' hepatitis B virus isolates from South Africa. J Gen Virol 83, 835-839.

    Lai, C. L., Chien, R. N., Leung, N. W. (1998). A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med 339, 61-68.

    Li, J., Buckwold, V. E., Hon, M. W. & Ou, J. H. (1999). Mechanism of suppression of hepatitis B virus precore RNA transcription by a frequent double mutation. J Virol 73, 1239-1244.

    Lin, H. J., Lai, C. L., Lauder, I. J., Wu, P. C., Lau, T. K. & Fong, M. W. (1991). Application of hepatitis B virus (HBV) DNA sequence polymorphisms to the study of HBV transmission. J Infect Dis 164, 284-288.

    Lindh, M., Gonzalez, J. E., Norkrans, G. & Horal, P. (1998a). Genotyping of hepatitis B virus by restriction pattern analysis of a pre-S amplicon. J Virol Methods 72, 163-174.

    Lindh, M., Gustavson, C., Mardberg, K., Norkrans, G., Dhillon, A. P. & Horal, P. (1998b). Mutation of nucleotide 1,762 in the core promoter region during hepatitis B e seroconversion and its relation to liver damage in hepatitis B e antigen carriers. J Med Virol 55, 185-190.

    Liu, C. J., Chen, P. J., Lai, M. Y., Kao, J. H. & Chen, D. S. (2001). Hepatitis B virus variants in patients receiving lamivudine treatment with breakthrough hepatitis evaluated by serial viral loads and full-length viral sequences. Hepatology 34, 583-589.

    Liu, W. C., Mizokami, M., Buti, M., Lindh, M., Young, K. C., Sun, K. T., Chi, Y. C., Li, H. H. & Chang, T. T. (2006). Simultaneous quantification and genotyping of hepatitis B virus for genotypes a to g by real-time PCR and two-step melting curve analysis. J Clin Microbiol 44, 4491-4497.

    Lok, A. S. (2000). Hepatitis B infection: pathogenesis and management. J Hepatol 32, 89-97.

    Marcellin, P., Chang, T. T., Lim, S. G. (2003). Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 348, 808-816.

    Melegari, M., Bruno, S. & Wands, J. R. (1994). Properties of hepatitis B virus pre-S1 deletion mutants. Virology 199, 292-300.

    Merican, I. (2000). Treatment of chronic hepatitis B virus infection in special groups of patients: decompensated cirrhosis, immunosuppressed and paediatric patients. J Gastroenterol Hepatol 15 Suppl, E71-78.

    Minami, M., Okanoue, T., Nakajima, E., Yasui, K., Kagawa, K. & Kashima, K. (1993). Significance of pre-S region-defective hepatitis B virus that emerged during exacerbation of chronic type B hepatitis. Hepatology 17, 558-563.

    Mizokami, M., Nakano, T., Orito, E., Tanaka, Y., Sakugawa, H., Mukaide, M. & Robertson, B. H. (1999). Hepatitis B virus genotype assignment using restriction fragment length polymorphism patterns. FEBS Lett 450, 66-71.

    Moolla, N., Kew, M. & Arbuthnot, P. (2002). Regulatory elements of hepatitis B virus transcription. J Viral Hepat 9, 323-331.

    Naito, H., Hayashi, S. & Abe, K. (2001). Rapid and specific genotyping system for hepatitis B virus corresponding to six major genotypes by PCR using type-specific primers. J Clin Microbiol 39, 362-364.

    Neumann, A. U. (2005). Hepatitis B viral kinetics: a dynamic puzzle still to be resolved. Hepatology 42, 249-254.

    Neurath, A. R., Kent, S. B., Strick, N. & Parker, K. (1986). Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 46, 429-436.

    Nishizono, A., Kohno, K., Takita-Sonoda, Y., Hiraga, M., Terao, H., Fujioka, T., Nasu, M. & Mifune, K. (1997). Sequential analyses of the mutations in the core upstream and precore regions of hepatitis B virus genome in anti-HBe positive-carriers developing acute exacerbation. J Med Virol 53, 266-272.

    Noborg, U., Gusdal, A., Pisa, E. K., Hedrum, A. & Lindh, M. (1999). Automated quantitative analysis of hepatitis B virus DNA by using the Cobas Amplicor HBV monitor test. J Clin Microbiol 37, 2793-2797.

    Norder, H., Hammas, B. & Magnius, L. O. (1990). Typing of hepatitis B virus genomes by a simplified polymerase chain reaction. J Med Virol 31, 215-221.

    Norder, H., Hammas, B., Lee, S. D., Bile, K., Courouce, A. M., Mushahwar, I. K. & Magnius, L. O. (1993). Genetic relatedness of hepatitis B viral strains of diverse geographical origin and natural variations in the primary structure of the surface antigen. J Gen Virol 74 ( Pt 7), 1341-1348.

    Nowak, M. A., Bonhoeffer, S., Hill, A. M., Boehme, R., Thomas, H. C. & McDade, H. (1996). Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci U S A 93, 4398-4402.

    Ohkubo, K., Kato, Y., Ichikawa, T. Kajiya, Y.Takeda, Y.Higashi, S.Hamasaki, K.Nakao, K.Nakata, K.Eguchi, K. (2002). Viral load is a significant prognostic factor for hepatitis B virus-associated hepatocellular carcinoma. Cancer 94, 2663-2668.

    Okamoto, H., Tsuda, F., Sakugawa, H., Sastrosoewignjo, R. I., Imai, M., Miyakawa, Y. & Mayumi, M. (1988). Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol 69 ( Pt 10), 2575-2583.

    Okamoto, H., Omi, S., Wang, Y., Itoh, Y., Tsuda, F., Tanaka, T., Akahane, Y., Miyakawa, Y. & Mayumi, M. (1989). The loss of subtypic determinants in alleles, d/y or w/r, on hepatitis B surface antigen. Mol Immunol 26, 197-205.

    Okamoto, H., Tsuda, F., Akahane, Y., Sugai, Y., Yoshiba, M., Moriyama, K., Tanaka, T., Miyakawa, Y. & Mayumi, M. (1994). Hepatitis B virus with mutations in the core promoter for an e antigen-negative phenotype in carriers with antibody to e antigen. J Virol 68, 8102-8110.

    Orito, E., Mizokami, M., Ina, Y., Moriyama, E. N., Kameshima, N., Yamamoto, M. & Gojobori, T. (1989). Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci U S A 86, 7059-7062.

    Orito, E., Mizokami, M., Sakugawa, H., Michitaka, K., Ishikawa, K., Ichida, T., Okanoue, T., Yotsuyanagi, H. & Iino, S. (2001). A case-control study for clinical and molecular biological differences between hepatitis B viruses of genotypes B and C. Japan HBV Genotype Research Group. Hepatology 33, 218-223.

    Owiredu, W. K., Kramvis, A. & Kew, M. C. (2001). Hepatitis B virus DNA in serum of healthy black African adults positive for hepatitis B surface antibody alone: possible association with recombination between genotypes A and D. J Med Virol 64, 441-454.

    Penna, A., Chisari, F. V., Bertoletti, A., Missale, G., Fowler, P., Giuberti, T., Fiaccadori, F. & Ferrari, C. (1991). Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen. J Exp Med 174, 1565-1570.

    Rehermann, B., Pasquinelli, C., Mosier, S. M. & Chisari, F. V. (1995). Hepatitis B virus (HBV) sequence variation of cytotoxic T lymphocyte epitopes is not common in patients with chronic HBV infection. J Clin Invest 96, 1527-1534.

    Repp, R., Rhiel, S., Heermann, K. H., Schaefer, S., Keller, C., Ndumbe, P., Lampert, F. & Gerlich, W. H. (1993). Genotyping by multiplex polymerase chain reaction for detection of endemic hepatitis B virus transmission. J Clin Microbiol 31, 1095-1102.

    Sakamoto, T., Tanaka, Y., Orito, E. Co, J.Clavio, J.Sugauchi, F. Ito, K. Ozasa, A.Quino, A.Ueda, R.Sollano, J. Mizokami, M. (2006). Novel subtypes (subgenotypes) of hepatitis B virus genotypes B and C among chronic liver disease patients in the Philippines. J Gen Virol 87, 1873-1882.

    Salfeld, J., Pfaff, E., Noah, M. & Schaller, H. (1989). Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus. J Virol 63, 798-808.

    Sanchez, L. V., Maldonado, M., Bastidas-Ramirez, B. E., Norder, H. & Panduro, A. (2002). Genotypes and S-gene variability of Mexican hepatitis B virus strains. J Med Virol 68, 24-32.

    Shin, J. W., Chung, Y. H., Choi, M. H. Kim, J. A.Ryu, S. H.Jang, M. K.Kim, I. S.Park, N. H.Lee, H. C.Lee, Y. S. Suh, D. J. (2005). Precore stop codon mutation of hepatitis B virus is associated with low breakthrough rate following long-term lamivudine therapy. J Gastroenterol Hepatol 20, 844-849.

    Sterneck, M., Gunther, S., Gerlach, J. Naoumov, N. V.Santantonio, T.Fischer, L.Rogiers, X.Greten, H.Williams, R. Will, H. (1997). Hepatitis B virus sequence changes evolving in liver transplant recipients with fulminant hepatitis. J Hepatol 26, 754-764.

    Stuyver, L., De Gendt, S., Van Geyt, C., Zoulim, F., Fried, M., Schinazi, R. F. & Rossau, R. (2000). A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness. J Gen Virol 81, 67-74.

    Sugauchi, F., Chutaputti, A., Orito, E., Kato, H., Suzuki, S., Ueda, R. & Mizokami, M. (2002a). Hepatitis B virus genotypes and clinical manifestation among hepatitis B carriers in Thailand. J Gastroenterol Hepatol 17, 671-676.

    Sugauchi, F., Orito, E., Ichida, T. Kato, H. Sakugawa, H. Kakumu, S. Ishida, T.Chutaputti, A.Lai, C. L.Ueda, R. Miyakawa, Y. Mizokami, M. (2002b). Hepatitis B virus of genotype B with or without recombination with genotype C over the precore region plus the core gene. J Virol 76, 5985-5992.

    Sugauchi, F., Orito, E., Ichida, T. Kato, H. Sakugawa, H. Kakumu, S. Ishida, T. Chutaputti, A. Lai, C. L. Gish, R. G. Ueda, R. Miyakawa, Y. Mizokami, M. (2003). Epidemiologic and virologic characteristics of hepatitis B virus genotype B having the recombination with genotype C. Gastroenterology 124, 925-932.

    Sypsa, V. A., Mimidis, K., Tassopoulos, N. C., Chrysagis, D., Vassiliadis, T., Moulakakis, A., Raptopoulou, M., Haida, C. & Hatzakis, A. (2005). A viral kinetic study using pegylated interferon alfa-2b and/or lamivudine in patients with chronic hepatitis B/HBeAg negative. Hepatology 42, 77-85.

    Takahashi, K., Aoyama, K., Ohno, N., Iwata, K., Akahane, Y., Baba, K., Yoshizawa, H. & Mishiro, S. (1995). The precore/core promoter mutant (T1762A1764) of hepatitis B virus: clinical significance and an easy method for detection. J Gen Virol 76 ( Pt 12), 3159-3164.

    Thakur, V., Guptan, R. C., Kazim, S. N., Malhotra, V. & Sarin, S. K. (2002). Profile, spectrum and significance of HBV genotypes in chronic liver disease patients in the Indian subcontinent. J Gastroenterol Hepatol 17, 165-170.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.

    Tsiang, M., Rooney, J. F., Toole, J. J. & Gibbs, C. S. (1999). Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology 29, 1863-1869.

    Usuda, S., Okamoto, H., Tanaka, T., Kidd-Ljunggren, K., Holland, P. V., Miyakawa, Y. & Mayumi, M. (2000). Differentiation of hepatitis B virus genotypes D and E by ELISA using monoclonal antibodies to epitopes on the preS2-region product. J Virol Methods 87, 81-89.

    Vieth, S., Manegold, C., Drosten, C., Nippraschk, T. & Gunther, S. (2002). Sequence and phylogenetic analysis of hepatitis B virus genotype G isolated in Germany. Virus Genes 24, 153-156.

    Whalley, S. A., Murray, J. M., Brown, D., Webster, G. J., Emery, V. C., Dusheiko, G. M. & Perelson, A. S. (2001). Kinetics of acute hepatitis B virus infection in humans. J Exp Med 193, 847-854.

    Wolters, L. M., Hansen, B. E., Niesters, H. G., DeHertogh, D. & de Man, R. A. (2002). Viral dynamics during and after entecavir therapy in patients with chronic hepatitis B. J Hepatol 37, 137-144.

    Yamaura, T., Tanaka, E., Matsumoto, A., Rokuhara, A., Orii, K., Yoshizawa, K., Miyakawa, Y. & Kiyosawa, K. (2003). A case-control study for early prediction of hepatitis B e antigen seroconversion by hepatitis B virus DNA levels and mutations in the precore region and core promoter. J Med Virol 70, 545-552.

    Yeh, S. H., Tsai, C. Y., Kao, J. H. Lin, M. W. Huang, W. L. Lu, S. F. Jih, J. Chen, D. S. Chen, P. J. (2004). Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis. J Hepatol 41, 659-666.

    Yu, M. W., Yeh, S. H., Chen, P. J. Liaw, Y. F. Lin, C. L. Liu, C. J. Shih, W. L. Kao, J. H. Chen, D. S. Chen, C. J. (2005). Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 97, 265-272.

    下載圖示
    2008-09-26公開
    QR CODE