簡易檢索 / 詳目顯示

研究生: 劉孟翰
Liu, Meng-Han
論文名稱: 不銹鋼雙極板燃料電池堆設計及其性能研究
Study on Performance of PEMFC Stack Design with Stainless Steel Bipolar Plates
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 118
中文關鍵詞: 質子交換膜燃料電池不銹鋼雙極板沖壓成形介面接觸阻抗電化學阻抗頻譜分析
外文關鍵詞: Proton exchange membrane fuel cell, Stainless steel bipolar plate, Stamping process, Interfacial contact resistance, Electrochemistry Impedance Spectroscopy
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在改善本實驗室自行開發之第一代大面積金屬雙極板燃料電池之性能,主要透過解決氣密問題與改善鈑件成形性來達到提升電池性能的目的。首先將進行電池組件間之介面接觸阻抗量測實驗,以了解不同材質板件及鍍層對介面接觸阻抗之影響。接著進行單電池之性能測試,將針對不同實驗參數如鎖附扭矩與增濕溫度進行探討,利用極化曲線測試與電化學阻抗頻譜分析進行電池性能的診斷,以了解不同操作條件對電池之性能及阻抗的影響,並找出最佳之操作條件。最後以相同配置組立三級電池堆進行測試,以驗證改善後之鈑件成形方式與氣密配置於三級電池堆架構下之可行性。
    由實驗結果顯示,最終改善後之第二代大面積金屬雙極板燃料電池於鎖附扭矩50 kgf-cm,增濕溫度50℃之操作條件下,可於電池電壓0.436V,電流密度921 mA/cm2下輸出45.78 W的最大功率,相較第一代大面積金屬雙極板燃料電池,最大功率共提升約18倍。此外以相同配置組立三級電池堆並進行測試,可發現改善後之氣密配置於三級電池堆架構下仍有其可行性。

    The goal of this study is to improve the performance of the lab designed first generation fuel cell with large area stainless steel bipolar plates. The performance of the fuel cell is improved by overcoming the problem of gas leakage and also an improved stamping process for stainless steel bipolar plate is applied to achieve better formability of stainless steel bipolar plate. First, a single cell is built and tested under different conditions including different assembling torques and different dew point temperature to find out the best operational condition. Then a three cell stack is built and tested to check if the improved stamping process and the new sealant can work on this stack.
    According to the experimental results, the peak power of the second generation cell with large area stainless steel bipolar plate is 45.78 W, and the peak power density is 401.6 mW/cm2 at a cell voltage of 0.436 V and at a current density of 921 mA/cm2 when a bolt torque of 50 kgf-cm is applied and the dew point temperature is set at 50℃. Compared to the first generation cell, the peak power of the second generation cell is 18 times higher than the peak power of the first generation cell. In addition, the experimental result shows that the new sealant is available on a three cell stack.

    中文摘要........I 英文延伸摘要........II 誌謝........V 目錄........VI 表目錄........X 圖目錄........XI 符號說明........XV 第一章 緒論........1 1-1 前言........1 1-2 質子交換膜燃料電池基本原理........4 1-3 研究動機........11 1-4 研究目的........11 第二章 文獻回顧........12 2-1 金屬雙極板材料........12 2-2 金屬雙極板製造成形方式........15 2-3 金屬雙極板電池組裝........17 2-4 燃料電池氣密方式........22 2-5 金屬雙極板電池堆研究........23 第三章 實驗設備........25 3-1 燃料電池測試平台........25 3-1-1 燃料電池性能測試機台........25 3-1-2 CHINO 3 kW燃料電池堆性能測試機台........26 3-1-3 燃料氣體供應系統........29 3-1-4 氣體增濕系統........31 3-1-5 KIKUSUI交流阻抗分析系統........32 3-2 微歐姆計........35 3-3 FUJI壓力感測軟片........37 3-4 LSCM雷射掃描式共軛焦顯微鏡........38 3-5 不銹鋼雙極板燃料電池相關規格........40 3-5-1 膜電極組........42 3-5-2 不銹鋼雙極板........42 3-5-3 石墨雙極板........43 3-5-4 集電板........44 3-5-5 UPE隔板........45 第四章 研究方法........46 4-1 極化曲線........46 4-1-1 活化過電位........47 4-1-2 歐姆過電位........50 4-1-3 濃度過電位........51 4-1-4 燃料穿透及內電流效應........53 4-2 定電流放電........54 4-3 電化學阻抗頻譜分析........54 4-3-1 質子交換膜燃料電池EIS阻抗分析方法........57 第五章 結果與討論........60 5-1 不銹鋼鈑件成形性分析........61 5-1-1 鈑件最大回彈量量測結果........64 5-1-2 鈑件成形深度量測結果........66 5-2 氣密墊片配置........70 5-2-1 氣密墊片厚度配置........70 5-2-2 不同厚度墊片之氣密測試與接觸性測試........73 5-3 電池部件間接觸阻抗測試........77 5-3-1 介面接觸阻抗量測原理........78 5-3-2 不同材質板件與鍍層對介面接觸阻抗之影響........80 5-4 單電池性能測試........81 5-4-1 鎖附扭矩對單電池性能之影響........82 5-4-2 鎖附扭矩對單電池阻抗之影響........84 5-4-3 增濕溫度對電池性能及阻抗之影響........93 5-4-4 不同材質雙極板對單電池性能與阻抗之影響........96 5-4-5 連續30分鐘定電流測試........101 5-5 三級電池堆性能測試........104 5-5-1 三級電池堆極化曲線測試........105 5-5-2 三級電池堆電化學阻抗頻譜分析測試........107 5-5-3 三級電池堆性能診斷分析........109 第六章 結論與未來工作........112 6-1 結論........112 6-2 未來工作........114 參考文獻........115

    [1] 陳振源, "未來的綠色能源–燃料電池," 科學發展月刊, 319期, pp. 62-65, 2005年。
    [2] J. Larminie, and A. Dicks, Fuel Cell Systems Explained. 2nd ed., John Wiley & Sons Ltd, 2003.
    [3] http://www.solarserver.com/solarmagazin/artikeloktober2001-e.html
    [4] J. Zhang, Y. Tang, C. Song, and J. Zhang, “Polybenzimidazole- membrane-based PEM fuel cell in the temperature range of 120-200°C,” Journal of Power Sources, Vol.172, pp. 163-171, 2007.
    [5] 黃鎮江, 燃料電池, 滄海書局, 2008年, pp. 13。
    [6] B. Andreaus, A.J. McEvoy, and G.G. Scherer, “Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy,” Electrochim Acta, Vol. 47, pp. 2223–2229, 2002.
    [7] X. Yu, and S. Ye, “Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst," Journal of Power Sources, Vol. 172, pp. 133-144, 2007.
    [8] X. Li, and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” International Journal of Hydrogen Energy, Vol. 30, pp. 359-371, 2005.
    [9] G.Y. Lee, M.K. Jung, S.N. Ryoo, M.S. Park, S.C. Ha, and S. Kim, “Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system,” International Journal of Hydrogen Energy, Vol.35, pp.13131-13136, 2010.
    [10] D.P. Davies, P.L. Adcock, M. Turpin, and S.J. Rowen, “Bipolar plate materials for solid polymer fuel cells,” Journal of Applied Electrochemistry, Vol.30, pp. 101-105, 2000.
    [11] H. Wang, M.A. Sweikart, and J.A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 115, pp. 5269-5277, 2003.
    [12] M.P. Brady, T.J. Toops, P.F. Tortorelli, K.L. More, H.M. Meyer, and J. Pihl, “Nitrided metallic bipolar foils in PEM fuel cells,” Oak Ridge National Laboratory, U.S. Department of Energy, FY 2009 Annual Progress Report, 2009.
    [13] S. Mahabunphachai, Ö.N. Coraa, and M. Koç, “Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates,” Journal of Power Sources, Vol. 195, pp. 5269-5277, 2010.
    [14] L. Peng, P. Yi, and X. Lai, “Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 39, pp. 21127-21153, 2014.
    [15] F. Dundar, E. Dur, M. Mahabunphachai, and M. Koç, “Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates,” International Journal of Power Sources, Vol. 195, pp. 3546-3552, 2010.
    [16] C. Turan, Ö. N. Cora, and M. Koç, “Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells,” International Journal of Hydrogen Energy, Vol. 36, pp. 12370-12380, 2011.
    [17] Y. H. Yun, “Deposition of gold–titanium and gold–nickel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 35, pp. 1713-1718, 2010.
    [18] C. Turan, Ö. N. Cora, and M. Koç, “Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 243, pp. 925-934, 2013.
    [19] 蕭逸宏, “應用田口法於燃料電池金屬雙極板沖壓成形研究,” 國立成功大學航空太空工程學系碩士論文, 2014。
    [20] D. Qiu, P. Yi, L. Peng, and X. Lai, “Study on shape error effect of metallic bipolar plate on the GDL contact pressure distribution in proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, Vol. 38, pp. 6762-6772, 2013.
    [21] D. Qiu, P. Yi, L. Peng, and X. Lai, “Assembly design of proton exchange membrane fuel cell stack with stamped metallic bipolar plates,” International Journal of Hydrogen Energy, Vol. 40, pp. 11559-11568, 2015.
    [22] E. Alizadeh, M.M. Barzegari, M. Momenifar, M. Ghadimi, and S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM fuel cell stack,” International Journal of Hydrogen Energy, Vol. 41, pp.3062-3071, 2016.
    [23] C.W. Lin, C.H. Chen, J. Tan, Y.J. Chao, and J.W.V. Zee, “Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment,” Journal of Power Sources, Vol. 196, pp.1955-1966, 2011.
    [24] D.H. Ye, and Z.G. Zhan, “A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 231, pp.285-292, 2013.
    [25] E.A. Choa, U.S. Jeona, S.A. Honga, I.H. Oha, and S.G. Kang, “Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates,” Journal of Power Sources, Vol. 142, pp.177-183, 2005.
    [26] P. Yi, L. Peng, L. Feng, P. Gan, and X. Lai, “Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates,” Journal of Power Sources, Vol. 195, pp.7061-7066, 2010.
    [27] 陳震宇, “溫度與溼度對PBI/H3PO4燃料電池特性影響之研究,” 國立成功大學航空太空工程學系博士論文, 2010年。
    [28] EG&G Services Parsons, Inc. “Fuel Cell Handbook, 6th Edition,” 2002.
    [29] W.H. Zhu, R.U. Payne, and B.J. Tatarchuk, “PEM stack test and analysis in a power system at operational load via ac impedance,” Journal of Power Sources, Vol. 168, pp. 211-217, 2007.
    [30] 洪舜浩, “燃料電池不銹鋼雙極板之成型性與接觸阻抗研究,” 國立成功大學航空太空工程學系碩士論文, 2015。

    下載圖示 校內:2022-06-26公開
    校外:2022-06-26公開
    QR CODE