| 研究生: |
劉孟翰 Liu, Meng-Han |
|---|---|
| 論文名稱: |
不銹鋼雙極板燃料電池堆設計及其性能研究 Study on Performance of PEMFC Stack Design with Stainless Steel Bipolar Plates |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 質子交換膜燃料電池 、不銹鋼雙極板 、沖壓成形 、介面接觸阻抗 、電化學阻抗頻譜分析 |
| 外文關鍵詞: | Proton exchange membrane fuel cell, Stainless steel bipolar plate, Stamping process, Interfacial contact resistance, Electrochemistry Impedance Spectroscopy |
| 相關次數: | 點閱:111 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在改善本實驗室自行開發之第一代大面積金屬雙極板燃料電池之性能,主要透過解決氣密問題與改善鈑件成形性來達到提升電池性能的目的。首先將進行電池組件間之介面接觸阻抗量測實驗,以了解不同材質板件及鍍層對介面接觸阻抗之影響。接著進行單電池之性能測試,將針對不同實驗參數如鎖附扭矩與增濕溫度進行探討,利用極化曲線測試與電化學阻抗頻譜分析進行電池性能的診斷,以了解不同操作條件對電池之性能及阻抗的影響,並找出最佳之操作條件。最後以相同配置組立三級電池堆進行測試,以驗證改善後之鈑件成形方式與氣密配置於三級電池堆架構下之可行性。
由實驗結果顯示,最終改善後之第二代大面積金屬雙極板燃料電池於鎖附扭矩50 kgf-cm,增濕溫度50℃之操作條件下,可於電池電壓0.436V,電流密度921 mA/cm2下輸出45.78 W的最大功率,相較第一代大面積金屬雙極板燃料電池,最大功率共提升約18倍。此外以相同配置組立三級電池堆並進行測試,可發現改善後之氣密配置於三級電池堆架構下仍有其可行性。
The goal of this study is to improve the performance of the lab designed first generation fuel cell with large area stainless steel bipolar plates. The performance of the fuel cell is improved by overcoming the problem of gas leakage and also an improved stamping process for stainless steel bipolar plate is applied to achieve better formability of stainless steel bipolar plate. First, a single cell is built and tested under different conditions including different assembling torques and different dew point temperature to find out the best operational condition. Then a three cell stack is built and tested to check if the improved stamping process and the new sealant can work on this stack.
According to the experimental results, the peak power of the second generation cell with large area stainless steel bipolar plate is 45.78 W, and the peak power density is 401.6 mW/cm2 at a cell voltage of 0.436 V and at a current density of 921 mA/cm2 when a bolt torque of 50 kgf-cm is applied and the dew point temperature is set at 50℃. Compared to the first generation cell, the peak power of the second generation cell is 18 times higher than the peak power of the first generation cell. In addition, the experimental result shows that the new sealant is available on a three cell stack.
[1] 陳振源, "未來的綠色能源–燃料電池," 科學發展月刊, 319期, pp. 62-65, 2005年。
[2] J. Larminie, and A. Dicks, Fuel Cell Systems Explained. 2nd ed., John Wiley & Sons Ltd, 2003.
[3] http://www.solarserver.com/solarmagazin/artikeloktober2001-e.html
[4] J. Zhang, Y. Tang, C. Song, and J. Zhang, “Polybenzimidazole- membrane-based PEM fuel cell in the temperature range of 120-200°C,” Journal of Power Sources, Vol.172, pp. 163-171, 2007.
[5] 黃鎮江, 燃料電池, 滄海書局, 2008年, pp. 13。
[6] B. Andreaus, A.J. McEvoy, and G.G. Scherer, “Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy,” Electrochim Acta, Vol. 47, pp. 2223–2229, 2002.
[7] X. Yu, and S. Ye, “Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst," Journal of Power Sources, Vol. 172, pp. 133-144, 2007.
[8] X. Li, and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” International Journal of Hydrogen Energy, Vol. 30, pp. 359-371, 2005.
[9] G.Y. Lee, M.K. Jung, S.N. Ryoo, M.S. Park, S.C. Ha, and S. Kim, “Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system,” International Journal of Hydrogen Energy, Vol.35, pp.13131-13136, 2010.
[10] D.P. Davies, P.L. Adcock, M. Turpin, and S.J. Rowen, “Bipolar plate materials for solid polymer fuel cells,” Journal of Applied Electrochemistry, Vol.30, pp. 101-105, 2000.
[11] H. Wang, M.A. Sweikart, and J.A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 115, pp. 5269-5277, 2003.
[12] M.P. Brady, T.J. Toops, P.F. Tortorelli, K.L. More, H.M. Meyer, and J. Pihl, “Nitrided metallic bipolar foils in PEM fuel cells,” Oak Ridge National Laboratory, U.S. Department of Energy, FY 2009 Annual Progress Report, 2009.
[13] S. Mahabunphachai, Ö.N. Coraa, and M. Koç, “Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates,” Journal of Power Sources, Vol. 195, pp. 5269-5277, 2010.
[14] L. Peng, P. Yi, and X. Lai, “Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 39, pp. 21127-21153, 2014.
[15] F. Dundar, E. Dur, M. Mahabunphachai, and M. Koç, “Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates,” International Journal of Power Sources, Vol. 195, pp. 3546-3552, 2010.
[16] C. Turan, Ö. N. Cora, and M. Koç, “Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells,” International Journal of Hydrogen Energy, Vol. 36, pp. 12370-12380, 2011.
[17] Y. H. Yun, “Deposition of gold–titanium and gold–nickel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 35, pp. 1713-1718, 2010.
[18] C. Turan, Ö. N. Cora, and M. Koç, “Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 243, pp. 925-934, 2013.
[19] 蕭逸宏, “應用田口法於燃料電池金屬雙極板沖壓成形研究,” 國立成功大學航空太空工程學系碩士論文, 2014。
[20] D. Qiu, P. Yi, L. Peng, and X. Lai, “Study on shape error effect of metallic bipolar plate on the GDL contact pressure distribution in proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, Vol. 38, pp. 6762-6772, 2013.
[21] D. Qiu, P. Yi, L. Peng, and X. Lai, “Assembly design of proton exchange membrane fuel cell stack with stamped metallic bipolar plates,” International Journal of Hydrogen Energy, Vol. 40, pp. 11559-11568, 2015.
[22] E. Alizadeh, M.M. Barzegari, M. Momenifar, M. Ghadimi, and S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM fuel cell stack,” International Journal of Hydrogen Energy, Vol. 41, pp.3062-3071, 2016.
[23] C.W. Lin, C.H. Chen, J. Tan, Y.J. Chao, and J.W.V. Zee, “Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment,” Journal of Power Sources, Vol. 196, pp.1955-1966, 2011.
[24] D.H. Ye, and Z.G. Zhan, “A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 231, pp.285-292, 2013.
[25] E.A. Choa, U.S. Jeona, S.A. Honga, I.H. Oha, and S.G. Kang, “Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates,” Journal of Power Sources, Vol. 142, pp.177-183, 2005.
[26] P. Yi, L. Peng, L. Feng, P. Gan, and X. Lai, “Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates,” Journal of Power Sources, Vol. 195, pp.7061-7066, 2010.
[27] 陳震宇, “溫度與溼度對PBI/H3PO4燃料電池特性影響之研究,” 國立成功大學航空太空工程學系博士論文, 2010年。
[28] EG&G Services Parsons, Inc. “Fuel Cell Handbook, 6th Edition,” 2002.
[29] W.H. Zhu, R.U. Payne, and B.J. Tatarchuk, “PEM stack test and analysis in a power system at operational load via ac impedance,” Journal of Power Sources, Vol. 168, pp. 211-217, 2007.
[30] 洪舜浩, “燃料電池不銹鋼雙極板之成型性與接觸阻抗研究,” 國立成功大學航空太空工程學系碩士論文, 2015。