簡易檢索 / 詳目顯示

研究生: 陳盈智
Chen, Ying-Chih
論文名稱: 海洋異常波浪與近岸瘋狗浪之預警模式
Warning Models for Oceanic and Coastal Freak Waves
指導教授: 董東璟
Doong, Dong-Jiing
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 157
中文關鍵詞: 瘋狗浪海洋異常波浪發生機率預警模式作業化
外文關鍵詞: Coastal Freak Wave, Oceanic Freak Wave, Occurrence Probability, Warning Model, Operational
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異常波浪會發生在岸邊與海上,因突然出現對岸上的遊客或海上操船或工作平台是一大威脅。為減少人員生命財產損失,發展機率預警系統有其必要。海上與近岸的異常波浪發生機制不同,近年來有許多研究探討海洋異常波浪演化的過程,但仍舊不完全了解;在近岸異常波浪(瘋狗浪)的研究,僅有少數國內學者討論。因發生機制複雜且尚未完全了解,本研究仰賴統計的方法進行預警模式建置,旨在發展海洋異常波浪與海岸瘋狗浪發生機率預測的方法,並進一步建置預警模式。在海洋異常波浪部分,彙整前人研究成果,得到一套異常波浪發生機率估算理論,然該理論採用線性波假設,本研究對估算理論進行修改,並以台灣海域的波浪資料進行率定,得到適合台灣海域的異常波浪發生機率估算理論。估算理論可結合業化波浪模式預報資料,完成一套異常波浪預報模式。預警模式以東吉島連續觀測之波浪資料進行驗證,24小時、36小時和48小時的異常波浪預測機率誤差分別為15.9%、22.9%和20.1%,顯示預警時間越長,預報的誤差越大,但整體來說預警模式具可參考之價值。本研究分析預警模式運作結果,發現當有天氣系統生成時,天氣系統的邊界通常有較高的異常波浪發生機率,且當鋒面通過台灣海峽時,也有異常波浪顯著提升的現象。本研究也分析數個颱風範圍內的異常波浪發生機率,顯示在颱風的第1象限有較高的發生機率,第三象限的發生機率較低,此結果與前人的研究結果相符,顯示異常波浪預警模式預測結果相當合理且可靠。
    本研究使用SPH(Smooth Particle Hydrodynamic)粒子法模擬2012年基隆海洋大學外一件瘋狗浪案例,探討波浪越堤後水粒子的運動行為,除了對越堤浪花特性有所掌握,亦發現堤前消波塊會使越堤水量減少,但增加水粒子的水平穿越速度。在瘋狗浪預警模式的部分,本研究蒐集台灣東北角海域的近岸影像,並發展了一套瘋狗浪影像分析程序,從影像中以二值法與均值法萃取浪花邊界,並從浪花的高度與浪花速度定義瘋狗浪,經人工驗證,該方法辨識準確,成功辨識率達86%。本研究在瘋狗浪預警模式建置採用類神經網路方法,以過往瘋狗浪落海事件與浮標資料作為輸入資料與訓練之樣本,輸入資料包含7個與瘋狗浪生成有關之海氣象因子,預警模式可預測未來12、18和24小時之瘋狗浪發生機率。本研究以瘋狗浪落海事件與瘋狗浪影像案例進行驗證,兩者正確率約有8成;同時也參考氣象局長浪即時訊息進行驗證,結果顯示預警模式可以提前發布預警。
    本研究建置的兩套異常波浪與瘋狗浪模式,本研究也結合波浪模式進行瘋狗浪與異常波浪機率預測,經驗證兩模式可準確預測發生機率,顯示兩模式已可實際應用。

    Freak waves may be generated and occur on the coast and in the ocean. The rapidly appearing freak wave is a huge threat for the people on the coast and on ships. It is necessary to develop a freak wave warning model to reduce the loss of life and property. The mechanics of freak wave generation in the ocean and coast are different. In recent years, many studies have explored the evolution of oceanic freak waves (OFWs), but it is still not fully understood. Only a few researchers have discussed coastal freak waves (CFWs). The mechanics of coastal freak waves are also not fully analytical. Warning models need to rely on stochastic methods for development.
    The purpose of this study was to propose a method to predict the occurrence probability of oceanic and coastal freak waves. A warning model was constructed by combining the operated wave model and the prediction method. The probability estimation formula for oceanic freak waves was obtained from literature. However, the formula was derived based on the linear wave assumption, in which there is an error under highly nonlinear situations. The new formula to estimate the probability of oceanic freak waves was proposed and calibrated based on the wave data observed in Taiwan waters. The verification of the theory shows that the error has changed from 22.3% to 13.2%. In this study, the operational wave model was applied as the input of the warning model to forecast the occurrence probability of oceanic freak waves. Coupled with the wave model operation, the occurrence probability of OFW could be calculated from the nonlinear parameter (μ4) of the wave, which can be obtained from the wave model output. The warning time of the model was 24, 36, and 48 hours. Verification result of the warning model was obtained by continuous wave observation on Dongji Island. The prediction probability errors of OFW at 24 hours, 36 hours and 48 hours were 15.9%, 22.9% and 20.1%, respectively. The forecast error was greater for longer warning times. The warning model has been tested and operated since 2016. The model output show that when a weather system was generated, the location close to the edge of the weather system usually had a higher probability of OFW. The prediction results of the warning model are quite reasonable and reliable.
    Near-shore optical images in northeastern Taiwan were collected and analyzed in this study. A coastal freak wave image analysis procedure was also proposed. The coastal freak wave was identified through the splash height and speed. The boundary of the splash was extracted from the image by edge detection technology with a success rate of 86%. The procedure was accurate in identifying CFWs. SPH (Smooth Particle Hydrodynamic) model was applied to simulate a CFW event at National Taiwan Ocean University in Keelung in 2012. The hydrodynamic behavior of the wave overtopping was discussed. The results showed that the armor block in front of the breakwater will reduce the discharge of wave overtopping and increases the horizontal throw speed. In the warning model, a neural network algorithm was used in the construction. The CFW events and buoy data were used as training samples and input data. The model predicts the occurrence probability of a CFW with lead times of 12, 18 and 24 hours. This research was verified by CFW events from media and from optical video. The accuracy rate of the two was approximately 80%. The warning model was also verified by the swell warning announced by CWB. All the verification results showed that the model can provide reliable warning information.
    CFW and OFW model proposed in this study operated with combination of wave model. The outputs of occurrence probability of CFW and OFW are accurate which mean the model could be used in practical.

    Abstract i 摘要 iii Context vii List of Figures ix List of Tables xiii Definition and Notation xiv Chapter 1. Introduction 1 1-1 Background 1 1-2 Literature Review 4 1-3 Objective 8 1-4 Structure of Thesis 8 Chapter 2. Methodology 10 2-1 Derivation of Oceanic Freak Wave Occurrence Probability 10 2-1-1 Maximus Wave Height Distribution 10 2-1-2 Estimation of OFW Occurrence Probability 13 2-1-3 Modification Estimation of OFW Occurrence Probability 15 2-2 ANN model 19 2-2-1 Artificial Neural Network 19 2-2-2 ANN Architecture and BPN Algorithm 20 2-2-3 Probabilistic Forecasting 25 Chapter 3. The Data 26 3-1 Coastal freak wave events 26 3-2 Shipwreck events 29 3-3 Buoy Data 31 3-3-1 Quality Check of Buoy Data 31 3-3-2 Extraction and statistics of Oceanic freak wave records 34 3-4 Coastal Freak Wave Observation 38 3-4-1 Image Analysis Method 38 3-4-2 Verification and Statistics 42 Chapter 4. Development of the OFW Probability Warning Model 51 4-1 Modification of the Oceanic Freak Wave Occurrence formula 51 4-1-1 Calibration of OFW predicted formula 51 4-1-2 Validation of OFW predicted formula 52 4-2 Swell Influence 54 4-3 Model Development 59 4-3-1 Model Operational Process 59 4-3-2 OFW model operational results 63 4-4 Model Validation 74 4-4-1 Validation with wave data 74 4-4-2 Comparison with ship accidents 78 Chapter 5. Coastal Freak Wave Modeling 97 5-1 Preface 97 5-2 Numerical Model 101 5-2-1 Government Equations 101 5-2-2 Numerical Scheme 102 5-3 Model Validation and simulations 105 5-3-1 Model Validation and Convergence Analysis 105 5-3-2 Model Setup 108 5-3-3 Simulation Results 109 5-3-4 Discussion 116 Chapter 6. Development of CFW Probabilistic Warning Model 119 6-1 Model development 119 6-1-1 Data preparation for model setup 120 6-1-2 Selection of Input Variables 120 6-1-3 Model assessment 123 6-2 Model Training 125 6-3 Model Validation 129 6-3-1 Validation by CFW events 129 6-3-2 Validation by CFW image case 131 6-3-3 Validation by Swell Information 133 6-3-4 Validation by CFW event during the typhoon period 134 6-4 Model Operation 138 Chapter 7. Conclusions and Suggestions 143 7-1 Conclusions 143 7-2 Suggestions 145 References 147

    Abdolmaleki, K., Thiagarajan, K. P., Morris-Thomas, M. T. (2004). Simulation of the dam break problem and impact flows using a Navier-Stokes solver. Simulation, 13, 17.
    Abt, S.R., Wittier, R.J., Taylor, A., Love, D.J. (1989). Human stability in a high flood hazard zone 1. JAWRA Journal of the American Water Resources Association, 25(4), 881-890.
    Akbari, H., Torabbeigi, M. (2021). SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers. Applied Ocean Research, 112, 102714.
    Altomare, C., Crespo, A. J., Rogers, B. D., Domínguez, J. M., Gironella, X., Gómez-Gesteira, M. (2014). Numerical modelling of armor block sea breakwater with smoothed particle hydrodynamics. Computers & Structures, 130, 34-45.
    Bae, H. U., Yun, K. M., Yoon, J. Y., Lim, N.H. (2016). Human Stability with respect to overtopping flow on the breakwater. Int. J. Appl. Eng. Res, 11, 111-119.
    Baschek, B., Imai, J. (2011). Rogue wave observations off the US West Coast. Oceanography, 24(2), 158-165.
    Benjamin, T.B. and Feir, J.E. (1967). The Disintegration of Wave Trains on Deep Water, J. Fluid Mechanics, 27, 417– 430.
    Bernier, N. B., Thompson, K. R. (2015). Deterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten days. Ocean Modelling, 86, 114-127.
    Borge, J. N., Reichert, K., Hessner, K. (2013). Detection of spatio-temporal wave grouping properties by using temporal sequences of X-band radar images of the sea surface. Ocean Modelling, 61, 21-37.
    Böse, M., Wenzel, F., Erdik, M. (2008). PreSEIS: A Neural Network-Based Approach to Earthquake Early Warning for Finite Faults. Bulletin of the Seismological Society of America, 98 (1), 366 – 382.
    Bruce, T., Pearson, J., Allsop, W. (2003). Hazards at coast and harbour seawalls–velocities and trajectories of violent overtopping jets. In Coastal Engineering 2002: Solving Coastal Conundrums (pp. 2216-2226).
    Bruce, T., Van der Meer, J. W., Franco, L., Pearson, J. M. (2009). Overtopping performance of different armour units for rubble mound breakwaters. Coastal Engineering, 56(2), 166-179.
    Capone, T., Panizzo, A., Cecioni, C., Darlymple, R. A. (2007). Accuracy and stability of numerical schemes in SPH. In 2nd SPHERIC international workshop.
    Cavaleri, L., Bertotti, L., Torrisi, L., Bitner‐Gregersen, E., Serio, M., Onorato, M. (2012). Rogue waves in crossing seas: The Louis Majesty accident. Journal of Geophysical Research: Oceans, 117(C11).
    Chang, F.J., Tseng, K. Y., Chaves, P. (2007). Shared near neighbours neural network model: a debris flow warning system. Hydrological Processes, 21, 1968 – 1976.
    Chang, H. K., Liou, J. C., Liu, S. J., Liaw, S. R. (2011). Simulated wave-driven ANN model for typhoon waves. Advances in Engineering Software, 42(1-2), 25-34.
    Chang, H.K., Lin, L.C., Ho, L.S., Lee M.J. (2006). Ann alert model for ship escape from Hualien harbor, Proceedings of the 28th Ocean Engineering Conference in Taiwan, National Sun Yat-Sen University, 923-928 (in Chinese).
    Chang, T.C., Chao, R.J. (2006). Application of back-propagation networks in debris flow prediction, Engineering Geology, 85, 270–280
    Chen, D. W., Tzang, S. Y., Hsieh, C. M., Hwang, R. R. J., Zeng, N. Y. (2014). A Case Study on Typhoon Wave-induced Hydrodynamic Behaviors Leading to Seawall Damages with the SPH Method. Procedia Engineering, 79, 119-124.
    Chien, H., Kao, C.C., Chuang L. Z. H. (2002). On the characteristics of observed freak waves, Coastal Engineering Journal, 44, 4, 301 – 319.
    Colagrossi, A., Landrini, M. (2003). Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of computational physics, 191(2), 448-475.
    Dankert H., Horstmann, J., Lehner, S., Rosenthal, W. (2003). Detection of wave groups in SAR images and radar image sequences, IEEE Trans. Geosci. Remote Sensing, 41(6), 1437-1446.
    De Oliveira, M. M., Ebecken, N. F. F., De Oliveira, J. L. F., de Azevedo Santos, I. (2009). Neural network model to predict a storm surge. Journal of applied Meteorology and Climatology, 48(1), 143-155.
    Deng, Y., Yang, J., Zhao, W., Li, X., Xiao, L., (2016). Freak wave forces on a vertical cylinder. Coastal Engineering, 114, 9-18.
    Deo, M. C. (2010). Artificial neural networks in coastal and ocean engineering. Ind. J. Geo-Marine Sci. 39, 589–596.
    Deo, M. C., Jha, A., Chaphekar, A. S., Ravikant, K. (2001). Neural networks for wave forecasting. Ocean engineering, 28(7), 889-898.
    Deo, M. C., Naidu, C. S. (1998). Real time wave forecasting using neural networks. Ocean engineering, 26(3), 191-203.
    Didenkulova, E. (2020). Catalogue of rogue waves occurred in the World Ocean from 2011 to 2018 reported by mass media sources. Ocean & Coastal Management, 188, 105076.
    Didenkulova, I. I., Slunyaev, A. V., Pelinovsky, E. N., Kharif, C. (2006). Freak waves in 2005. Natural Hazards and Earth System Sciences, 6(6), 1007-1015.
    Didenkulova, I., Anderson, C. (2010). Freak waves of different types in the coastal zone of the Baltic Sea. Natural Hazards and Earth System Sciences, 10(9), 2021-2029.
    Didier, E., Neves, M. G. (2009). Wave overtopping of a typical coastal structure of the Portuguese coast using a SPH model. Journal of Coastal Research, 496-500.
    Didier, E., Neves, D. R. C. B., Martins, R., Neves, M. G. (2014). Wave interaction with a vertical wall: SPH numerical and experimental modeling. Ocean engineering, 88, 330-341.
    Doong, D. J., Peng, J. P., Chen, Y. C. (2018). Development of a warning model for coastal freak wave occurrences using an artificial neural network. Ocean Engineering, 169, 270-280.
    Draycott, S., Li, Y., Stansby, P. K., Adcock, T. A. A., van den Bremer, T. S. (2022). Harmonic-induced wave breaking due to abrupt depth transitions: An experimental and numerical study. Coastal Engineering, 171, 104041.
    Dysthe, K., Krogstad, H. E., Müller, P. (2008). Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287-310.
    Farzin, S., Fatehi, R., Hassanzadeh, Y. (2019). Position explicit and iterative implicit consistent incompressible SPH methods for free surface flow. Computers & Fluids, 179, 52-66.
    Fedele, F., Brennan, J., Ponce de León, S., Dudley, J., Dias, F. (2016). Real world ocean rogue waves explained without the modulational instability. Scientific reports, 6(1), 1-11.
    Feng, X., Tsimplis, M. N., Quartly, G. D., Yelland, M. J. (2014). Wave height analysis from 10 years of observations in the Norwegian Sea. Continental Shelf Research, 72, 47-56.
    Ferrari, A., Dumbser, M., Toro, E. F., Armanini, A. (2009). A new 3D parallel SPH scheme for free surface flows. Computers & Fluids, 38(6), 1203-1217.
    Funke, E. R., Mansard, E. P. D. (1980). On the synthesis of realistic sea states. Coastal Engineering Proceedings, (17), 176-176.
    Gingold, R. A., Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 181(3), 375-389.
    Goda, Y. (2009). Derivation of unified wave overtopping formulas for seawalls with smooth, impermeable surfaces based on selected CLASH datasets. Coastal Engineering, 56(4), 385-399.
    Goda, Y. (2010). Random seas and design of maritime structures (Vol. 33). World Scientific Publishing Company.
    Gómez-Gesteira, M., Cerqueiro, D., Crespo, C., Dalrymple, R. A. (2005). Green water overtopping analyzed with a SPH model. Ocean Engineering, 32(2), 223-238.
    Gotoh, H., Shao, S., Memita, T. (2004). SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater. Coastal Engineering Journal, 46(01), 39-63.
    Guedes Soares, C., Cherneva, Z., Antao, E. M. (2004). Abnormal waves during hurricane Camille. Journal of Geophysical Research: Oceans, 109(C8).
    Hashemi, M. R., Spaulding, M. L., Shaw, A., Farhadi, H., Lewis, M. (2016). An efficient artificial intelligence model for prediction of tropical storm surge. Natural Hazards, 82(1), 471-491.
    Heller, E. J. (2006). Freak ocean waves and refraction of Gaussian seas. In Extreme Events in Nature and Society (pp. 189-210). Springer, Berlin, Heidelberg.
    Janssen, P. A. (2003). Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 33(4), 863-884.
    Jonkman, S. N., Penning‐Rowsell, E. (2008). Human instability in flood flows 1. Journal of the American Water Resources Association, 44(5), 1208-1218.
    Kharif, C., Pelinovsky, E. (2003). Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics-B/Fluids, 22(6), 603-634.
    Kharif, C., Pelinovsky, E., Slunyaev, A. (2009). Rogue waves in the ocean. Springer Science & Business Media.
    Khayyer, A., Gotoh, H., Shao, S. D. (2008). Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering, 55(3), 236-250.
    Koshizuka, S., Tamako, H., Oka, Y. (1995). A particle method for incompressible viscous flow with fluid fragmentation. Comput. Fluid Dynam, 4, 29–46.
    Kriesel, D. (2007). A Brief Introduction to Neural Networks. available at: http://www.dkriesel.com.
    Kung, H.Y., Chen, C.H., Ku, H.H. (2012). Designing intelligent disaster prediction models and systems for debris-flow disasters in Taiwan. Experts Systems with Application, 39, 5838 – 5856.
    Lavrenov, I. V., Porubov, A. V. (2006). Three reasons for freak wave generation in the non-uniform current. European Journal of Mechanics-B/Fluids, 25(5), 574-585.
    Lavrenov, I. V. (1998). The wave energy concentration at the Agulhas current off South Africa, Natural Hazards, 17, 117 – 127.
    Lee, T. L. (2006). Neural network prediction of a storm surge. Ocean Engineering, 33(3-4), 483-494.
    Lehner, S., Schulz-Stellenfleth, J., Niedermeier, A., Horstmann, J., Rosenthal, W. (2002). Detection of extreme waves using synthetic aperture radar images, 1893-1895, IGARSS 2002, Toronto, June 24-28.
    Liu, G. R., Liu, M. B. (2003). Smoothed particle hydrodynamics: a meshfree particle method. World Scientific.
    Liu, P. C., Chen, H. S., Doong, D. J., Kao, C. C., Hsu, Y. J. (2009). Freaque waves during typhoon Krosa. In Annales Geophysicae (Vol. 27, No. 7, pp. 2633-2642). Copernicus GmbH.
    Liu, P. C., Pinho, U. F. (2004). Freak waves-more frequent than rare!. In Annales Geophysicae (Vol. 22, No. 5, pp. 1839-1842). Copernicus GmbH.
    Lo, E. Y., Shao, S. (2002). Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Applied Ocean Research, 24(5), 275-286.
    Longuet-Higgins, M. S. (1957). The statistical analysis of a random, moving surface. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(966), 321-387.
    Longuet-Higgins, M. S. (1963). The effect of non-linearities on statistical distributions in the theory of sea waves. Journal of fluid mechanics, 17(3), 459-480.
    López, V.F., Medina, S.L., Paz, J.F.d. (2012). Taranis: Neural networks and intelligent agents in the early warning against floods. Experts Systems with Application, 39, 10031 – 10037.
    Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The astronomical journal, 82, 1013-1024.
    Luger, George F. (2002). Artificial Intelligence–Structures and Strategies for Complex Problem Solving. 4th Ed. Addison Wesley, USA.
    Makarynska, D., Makarynskyy, O. (2008). Predicting sea-level variations at the Cocos (Keeling) Islands with artificial neural networks. Computers & Geosciences, 34(12), 1910-1917.
    Mase, H., Yasuda, T., Mori, N. (2011). Real-Time Prediction of Tsunami Magnitudes in Osaka Bay, Japan, Using an Artificial Neural Network, Journal of Water, Port, 137 (5), 263 – 268.
    McCulloch, W. S., Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    Monaghan, J. J. (1994). Simulating free surface flows with SPH. Journal of computational physics, 110(2), 399-406.
    Monaghan, J. J., Kocharyan, A. (1995). SPH simulation of multi-phase flow. Computer Physics Communications, 87(1-2), 225-235.
    Monaghan, J. J., Cas, R. A., Kos, A. M., Hallworth, M. (1999). Gravity currents descending a ramp in a stratified tank. Journal of Fluid Mechanics, 379, 39-69.
    Monaghan, J. J., Kos, A., Issa, N. (2003). Fluid motion generated by impact. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(6), 250-259.
    Mori, N. (2004). Occurrence probability of a freak wave in a nonlinear wave field. Ocean Engineering, 31(2), 165-175.
    Mori, N., (2012). Freak waves under typhoon conditions. Journal of Geophysical Research: Oceans, 117(C11).
    Mori, N., Janssen, P. A. (2006). On kurtosis and occurrence probability of freak waves. Journal of Physical Oceanography, 36(7), 1471-1483.
    Mori, N., Liu, P. C., Yasuda, T. (2002). Analysis of freak wave measurements in the Sea of Japan. Ocean Engineering, 29(11), 1399-1414.
    Mori, N., Onorato, M., Janssen, P. A. (2011). On the estimation of the kurtosis in directional sea states for freak wave forecasting. Journal of Physical Oceanography, 41(8), 1484-1497.
    Müller, P., Garrett, C., Osborne, A. (2005). Rogue waves. Oceanography, 18(3), 66.
    Negnevitsky, M. (2002). Artificial Intelligence: A Guide to Intelligent Systems. Addison Wesley, Harlow, England.
    Nikolkina, I., Didenkulova, I. (2011). Rogue waves in 2006–2010. Natural hazards and Earth system sciences, 11(11), 2913-2924.
    Nikolkina, I., Didenkulova, I. (2012). Catalogue of rogue waves reported in media in 2006–2010. Natural hazards, 61(3), 989-1006.
    Onorato, M., Osborne, A. R., Serio, M. (2006). Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves. Physical review letters, 96(1), 014503.
    Onorato, M., Osborne, A. R., Serio, M., Bertone, S. (2001). Freak waves in random oceanic sea states. Physical review letters, 86(25), 5831.
    Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F. T. (2013). Rogue waves and their generating mechanisms in different physical contexts. Physics Reports, 528(2), 47-89.
    Peng, Z., Zou, Q. P. (2011). Spatial distribution of wave overtopping water behind coastal structures. Coastal engineering, 58(6), 489-498.
    Penning-Rowsell, E., Floyd, P., Ramsbottom, D., Surendran, S. (2005). Estimating injury and loss of life in floods: a deterministic framework. Natural hazards, 36(1-2), 43-64.
    Pu, J. H., Shao, S. (2012). Smoothed particle hydrodynamics simulation of wave overtopping characteristics for different coastal structures. The Scientific World Journal, 2012.
    Qin, H., Tang, W., Xue, H., Hu, Z. (2017). Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space. Applied Ocean Research, 64, 155-168.
    Quang, T. T., Van, T. N. (2014). Numerical study of wave overtopping on sea-dikes with crown-walls. Journal of Hydro-environment research, 8(4), 367-382.
    Ramsbottom, D. Floyd, P., Penning-Towsell, E. (2006). Flood Risks to People. Phase 2:Project Record, FD 2321/PR, Department for Environment Food and Rural Affairs, United Kingdom, p. 166.
    Rao, X., Li, L., Amini, F., Tang, H. (2012). Numerical study of combined wave and surge overtopping over RCC strengthened levee systems using the smoothed particle hydrodynamics method. Ocean Engineering, 54, 101-109.
    Romano, M., Liong, S.Y., Vu, M.T., Zemskyy, P., Doan, C.D., Dao, M. H., Tkalich, P. (2009). Artificial neural network for tsunami forecasting. Journal of Asian Earth Sciences, 36, 29 – 37.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986). Learning internal representations by back-propagating errors. Nature, 323, 533 – 536.
    Russell, S., Norvig, P. (2003). Artificial Intelligence - A Modern Approach. 2nd Edition. Prentice Hall.
    Schalkoff, R. J. (1997). Artificial Neural Networks. International Editions. McGraw-Hill.
    Schulz-Stellenfleth, J., Lehner, S. (2004). Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1149-1160.
    Sergeeva, A., Slunyaev, A. (2013). Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states. Natural Hazards and Earth System Sciences, 13(7), 1759-1771.
    Serio, M., Onorato, M., Osborne, A. R., Janssen, P. A. (2005). On the computation of the Benjamin-Feir Index. Il nuovo cimento C, 28(6), 893-903.
    Shao, S., Lo, E. Y. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in water resources, 26(7), 787-800.
    Shao, S., Ji, C., Graham, D. I., Reeve, D. E., James, P. W., Chadwick, A. J. (2006). Simulation of wave overtopping by an incompressible SPH model. Coastal Engineering, 53(9), 723-735.
    Sibi, P., Jones, S. A., Siddarth, P. (2013). Analysis of different activation functions using back propagation neural networks. Journal of theoretical and applied information technology, 47(3), 1264-1268.
    Slunyaev, A., Didenkulova, I., Pelinovsky, E. (2011). Rogue waters. Contemporary Physics, 52(6), 571-590.
    Slunyaev, A., Pelinovsky, E., Soares, C. G. (2005). Modeling freak waves from the North Sea. Applied Ocean Research, 27(1), 12-22.
    Smith, R. (1976), Giant waves, Journal of Fluid Mechanics, 77, 417 – 431.
    Stansell, P. (2004). Distributions of freak wave heights measured in the North Sea. Applied Ocean Research, 26(1-2), 35-48.
    Sunkpho, J., Ootamakorn, C. (2011). Real-time flood monitoring and warning system. Journal of Science and Technology, 33(2), 227 – 235.
    Takahashi, T., Imamura, F., Shuto, N. (1992). Research on flows and bathymetry variations by tsunami: the Case of Kesen-numa Bay, Japan, due to the 1960 Chilean Tsunami. Tsunami Engineering Technical Report, (9), 185-201.
    Tamura, H., Waseda, T., Miyazawa, Y. (2009). Freakish sea state and swell‐windsea coupling: Numerical study of the Suwa‐Maru incident. Geophysical Research Letters, 36(1).
    Thirumalaiah, K., Deo, M. C. (1998). Real-Time Flood Forecasting Using Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 13, 101 – 111.
    Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J., Bitner-Gregersen, E., Onorato, M. (2010). Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. Journal of Fluid Mechanics, 664, 313-336.
    Toffoli, A., Waseda, T., Houtani, H., Cavaleri, L., Greaves, D., Onorato, M. (2015). Rogue waves in opposing currents: an experimental study on deterministic and stochastic wave trains. Journal of Fluid Mechanics, 769, 277-297.
    Tsai, C. P., Lee, T. L. (1999). Back-propagation neural network in tidal-level forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(4), 195-202.
    Tsai, C.H., Su, M.Y., Huang, S.J. (2004). Observations and Conditions for Occurrence of Dangerous Coastal Waves, Ocean Engineering, 31, 745– 760.
    Vacondio, R., Altomare, C., De Leffe, M., Hu, X., Le Touzé, D., Lind, S., …, Souto-Iglesias, A. (2021). Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Computational Particle Mechanics, 8(3), 575-588.
    Van der Meer, J. W., Hardeman, B., Steendam, G. J., Schüttrumpf, H., Verheij, H. (2010). Flow depths and velocities at crest and landward slope of a dike, in theory and with the wave overtopping simulator. Coastal Engineering Proceedings, 1(32), 10.
    Veltcheva, A. D., Soares, C. G. (2012). Analysis of abnormal wave groups in Hurricane Camille by the Hilbert Huang Transform method. Ocean engineering, 42, 102-111.
    Veltcheva, A., Soares, C. G. (2016). Nonlinearity of abnormal waves by the Hilbert–Huang Transform method. Ocean engineering, 115, 30-38.
    Walker, D. A., Taylor, P. H., Taylor, R. E. (2004). The shape of large surface waves on the open sea and the Draupner New Year wave. Applied Ocean Research, 26(3-4), 73-83.
    Wang, Y., Tao, A. F., Zheng, J. H., Doong, D. J., Fan, J., Peng, J. (2014). A preliminary investigation of rogue waves off the Jiangsu coast, China. Natural Hazards and Earth System Sciences, 14(9), 2521-2527.
    White, B. S., Fornberg, B. (1998). On the chance of freak waves at sea. Journal of fluid mechanics, 355, 113-138..
    Widrow, B., Hoff, M.E. (1960). Adaptive switching circuits. (1960) IRE WESCON Convention Record, pp. 96–104.
    Wolfram, J., Linfoot, B., Stansell, P. (2001). Long-and Short-Term Extreme Wave Statistics. In Proceedings of Rogue Waves 2000, November 29-30, 2000, Brest, France.
    Xia, J., Falconer, R. A., Wang, Y., Xiao, X. (2014). New criterion for the stability of a human body in floodwaters. Journal of Hydraulic Research, 52(1), 93-104.
    Xu, X., Jiang, Y. L., Yu, P. (2021). SPH simulations of 3D dam-break flow against various forms of the obstacle: Toward an optimal design. Ocean Engineering, 229, 108978.
    Yilmaz, A., Kocaman, S., Demirci, M. (2021). Numerical modeling of the dam-break wave impact on elastic sluice gate: A new benchmark case for hydroelasticity problems. Ocean Engineering, 231, 108870.
    Yoo, J., Lee, D. Y., Ha, T. M., Cho, Y. S., Woo, S. B. (2010). Characteristics of abnormal large waves measured from coastal videos. Natural Hazards and Earth System Sciences, 10(4), 947-956.
    Young, I. R. (2003). A review of the sea state generated by hurricanes. Marine structures, 16(3), 201-218.
    Zhang, G., Patuwo, B. E., Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14, 35–62.
    Zhao, X., Ye, Z., Fu, Y., Cao, F. (2014). A CIP-based numerical simulation of freak wave impact on a floating body. Ocean Engineering, 87, 50-63.
    Zhou, Z. Q., De Kat, J. O., Buchner, B. (1999). A nonlinear 3D approach to simulate green water dynamics on deck. In Proceedings of the seventh international conference on numerical ship hydrodynamics, Nantes, France.

    無法下載圖示 校內:2027-07-01公開
    校外:2027-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE