| 研究生: |
蕭閔典 Hsiao, Min-Tien |
|---|---|
| 論文名稱: |
利用金銅奈米空球在溶液相中製備三維的Cu2(OH)3Cl奈米花 Fabrication of Three-Dimensional Cu2(OH)3Cl Nanoflowers With The Aid of Au-Cu Hollow Nanospheres Using a Solution-phase Methodology |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 奈米花 、金銅奈米空球 |
| 外文關鍵詞: | Au-Cu Hollow Nanosphere, Nanoflower |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為有金銅奈米空球的幫助下使我們可以成功的在溶液相中製備出像花形狀的Cu2(OH)3Cl奈米結構。奈米花是一種三維的奈米結構,其是由數十片奈米板所組裝而成,大小大約是幾百個奈米,而金銅奈米球在製備奈米花上扮演著非常重要的角色。我們利用SEM和TEM去觀察金銅中空奈米球與奈米花的形狀與結構,利用HR-TEM, SAED, EDX和XRD去鑑定實驗中所製備的中空奈米球與奈米花的成份。我們做了一系列的實驗去探討奈米花的形成機制,這些實驗包括了在不同反應時間所得到的奈米花形態、在反應中添加保護劑與在通Ar氣體和通氧氣的情況下進行反應所得的結果。最後我們利用一種陽離子型的界面活性劑去分離金銅中空奈米球與奈米花,達到純化的目的
Flower-like nanostructures of botallackite Cu2(OH)3Cl have been synthesized in the solution with the aid of Au-Cu hollow nanospheres. The nanoflowers are three-dimensional nanostructures with several hundreds nanometers in size and contain tens of self-organization layered petals. Formation of botallackite Cu2(OH)3Cl nanoflowers was strongly associated with the presence of Au-Cu hollow nanospheres. The morphologied and composition of hollow and nanoflowers have been characterized by SEM, TEM, HR-TEM, SAED, EDX and XRD. We had controlled the time of reaction to get the time-dependent evolution of nanoflowers;and gone on adding protective agent experiments , in argon condition and in oxygen condition experiment to discuss the nanoflower’s formation mechanism. Finally, we utilized a cationic surfactant to separated hollow nanospheres and nanoflowers.
1. 張立德、牟季美著, “奈米材料和奈米結構”, 滄海書局, 民91
2. C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Nano Lett., 2005, 5, 709
3. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun, Nano Lett., 2005, 5, 379
4. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc., 2004, 126, 273
5. H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, Nano Lett., 2004, 4, 187
6. D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, C. Zhou, Nano Lett., 2004, 4, 2151
7. E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, G. Gruner, Nano Lett., 2005, 5, 757
8. M. S. Wang, L. M. Peng, J. Y. Wang, Q. Chen, J. Phys. Chem. B, 2005, 109, 110
9. G. Hashiguchi, T. Goda, M. Hosogi, K. Hirano, N. Kaji, Y. Baba, K. Kakushima, H. Fujita, Anal. Chem., 2003, 75, 4347
10. C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, Nano Lett., 2004, 4, 345
11. Y. W. Wang, B. H. Hong, J. Y. Lee, J. S. Kim, G. H. Kim, K. S. Kim, J. Phys. Chem. B, 2004, 108, 16723
12. G. W. Ho, A. S. W. Wong, A. T. S. Wee, M. E. Welland, Nano Lett., 2004, 4, 2023
13. H. T. Zhang, G. Wu, X. H. Chen, Langmuir, 2005, 21, 4281
14. J. C. Yu, A. Xu, L. Zhang, R. Song, L. Wu, J. Phys. Chem. B, 2004, 108, 64
15. L. Dong, T. Gushtyuk, J. Jiao, J. Phys. Chem. B, 2004, 108, 1617
16. C. Yan, D. Xue, J. Phys. Chem. B, 2005, 109, 12358
17. L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, D. Golberg, Adv. Mater., 2005, 17, 110
18. B. Liu, H. C. Zeng, J. Am. Chem. Soc., 2004, 126, 8124
19. M. Ichikawa, N. Wada, Jpn. J. Appl. Phys., 1976, 15, 755
20. H. Hirai, H. Wakabrayashi, M. Komiyama, Bull. Chem. Soc. Jpn., 1986, 59, 367
21. H. Hung, G. Q. Xu, W. Ji, Y. M. Kek, C. H. Chew, F. Q. Yan, P. S. Oh, S. H. Tang, Langmuir, 1997, 13, 172
22. D. G. Eadon, J. A. Creighton, J. Chem. Soc. Farady. Trans., 1991, 87, 3881
23. P. Pileni, I. Lisiecki, J. Am. Chem. Soc., 1993, 115, 3887
24. I. Lisiecki, F. Billoudet, and M. P. Pileni, J. Phys. Chem., 1996, 100, 4160
25. N. A. Dhas, C. P. Raj, A. Gedanken, Chem. Mater., 1998, 10, 1446
26. M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, E. Wang, Chem. Commun., 2003, 1884
27. Y. Chang, M. L. Lye, H. C. Zeng. Langmuir, 2005, 21, 3746
28, (a) Y. H. Yeh, M. S. Yeh, Y. P. Lee, C. S. Yeh, Chem. Lett., 1998, 1183 (b) M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, C. S. Yeh, J. Phys. Chem. B, 1999, 103, 6851
29. H. Hosono, Y. Abe, Appl. Phys. Lett., 1992, 60, 2613
30. H. Hirai, Hidehiko, Wakabayshi, M. Komiyama, Chem. Lett., 1983, 1047
31. H. Hirai, Hidehiko, Wakabayshi, M. Komiyama, Bull. Chem. Soc. Jpn., 1986, 59, 545
32. Y. Chang, J. J. Teo, H. C. Zeng, Langmuir, 2005, 21, 1074
33. Y. Sun, B. Wiley, Z. Y. Li, Y. Xia, J. Am. Chem. Soc., 2004, 126, 9399
34. M. Wu, X. Pan, X. Qian, J. Yin, Z. Zhu, Inorganic Chemistry Communication, 2004, 7, 359
35. H. T. Schmidt, B. L. Gray, P. A. Wingert, A. E. Ostafin, Chem. Mater., 2004, 16, 4942
36. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, J. Am. Chem. Soc., 2002, 124, 7642
37. Y. Sun, B. Mayers, Y. Xia, Adv. Mater., 2003, 15, 641
38. L. Lu, G. Sun, S. Xi, H. Wang, H. Zhaug; Langmuir, 2003, 19, 3074
39. Y. Sun, Y. Xia, Science, 2002, 298, 2176
40. Y. Sun, B. Mayers,Y. Xia, Adv. Mater., 2003, 15, 641
41. Y. Sun, B. Mayers, Y. Xia, Nano. Lett., 2002, 2, 481
42. 陳信甫,”銅奈米粒子的探討:硫醇吸附的影響與金銅合金奈米空球的製備”,國立成功大學博碩士論文, 化學, 2003
43. H. G. Yang, H. C. Zeng, J. Phys. Chem. B, 2004, 108, 3492
44. Y. Yin, R. M. Rious, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science, 2004, 304, 711
45. Smigelskas, A. D.; Kirkendall, E. O. Trans. Am. Inst. Min. Metall. Eng. 1947, 171, 130
46. C. Burda, X. Chen, R. Narayanan, M. A. El-sayed, Chem. Rev., 2005, 105, 1025
47. C. T. Campbell, S. C. Parker, D. E. Starr, Science, 2002, 298, 811
48. Y. Chang, J. J. Teo, H. C. Zeng, Langmuir, 2005, 21, 1074
49. V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science, 2001, 291, 2115
50. Y. Wang, Y. Xia, Nano Lett., 2004, 4, 2047
51. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M.
Meyyappan, Science, 2003, 300, 1249
52. Y. Cui, C. M. Lieber, Science, 2001, 291, 851
53. S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature, 1998, 393, 49
54. A. Chen, X. Peng, K. Koczkur, B. Miller, Chem. Commun., 2004, 1964
55. X. L. Li, J. P. Ge, Y. D. Li, Chem. Eur. J., 2004, 10, 6163
56. W. B. Zhao, J. J. Zhu, J. Z. Xu, H. Y. Chen, Inorganic Chemistry Communication, 2004, 7, 847
57. Z. Zhang, X. Shao, H. Yu, Y. Wang, M. Han, Chem. Mater., 2005, 17, 332
58. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P. M. Ajayan, Nature, 2002, 416, 495
59. J. Cao, J. Wang, B. Fang, X. Chang, M. Zheng, H. Wang, Chemistry Letters, 2004, 33, 1332
60. S. Li, H. Zhang, J. Xu, D. Yang, Materials Letters, 2005, 59, 420
61. S. Liu, J. Yu, B. Cheng, Q, Zhang, Chemistry Letters, 2005, 34, 564
62. A. M. Pollard, R. G. Thomas, P. A. Williams, Mineralog. Mag., 1989, 53, 557
63. M. E. Fleef, Acta Cryst., 1975, B31, 183
64. F. C. Hawthorne, Mineralog. Mag., 1985, 49, 87
65. J. B. Parise, B, G, Hyde, Acta Cryst., 1986, C42, 1277
66. H. R. Ostwald, W. Feitknecht, Helvetica Chimica Acta, 1964, 47, 273
67. H. C. Lichtenegger, T. Schoberl, M. H. Bartl, H. Waite, G. D. Stucky, Science, 2002, 298, 398
68. S. H. Lee, Y. S. Her, E. Matijevic, Journal of Colloid And Interface Science, 1997, 186, 193
69. R. R. Clemente, C. J. Serna, M. Ocana, E. Matijevic, Journal of Crystal Growth, 1994, 143, 277
70. C. L. Zhu, C. N. Chen, L. Y. Hao, Y. Hu, Z. Y. Chen, Journal of Crystal Growth, 2004, 263,473
71. S. Kratohvil, E. Matijevic, J. Mater. Res., 1991, 6, 766
72. Gale, W. F.; Totemeier T. C. Smithells Metals Reference Book, 8th ed.; Elsevier: Oxford, UK, 2004.
73. GSAS: Larson A. C.; Von Dreele, R. B. General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, USA., 1994.