簡易檢索 / 詳目顯示

研究生: 蕭閔典
Hsiao, Min-Tien
論文名稱: 利用金銅奈米空球在溶液相中製備三維的Cu2(OH)3Cl奈米花
Fabrication of Three-Dimensional Cu2(OH)3Cl Nanoflowers With The Aid of Au-Cu Hollow Nanospheres Using a Solution-phase Methodology
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 奈米花金銅奈米空球
外文關鍵詞: Au-Cu Hollow Nanosphere, Nanoflower
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   因為有金銅奈米空球的幫助下使我們可以成功的在溶液相中製備出像花形狀的Cu2(OH)3Cl奈米結構。奈米花是一種三維的奈米結構,其是由數十片奈米板所組裝而成,大小大約是幾百個奈米,而金銅奈米球在製備奈米花上扮演著非常重要的角色。我們利用SEM和TEM去觀察金銅中空奈米球與奈米花的形狀與結構,利用HR-TEM, SAED, EDX和XRD去鑑定實驗中所製備的中空奈米球與奈米花的成份。我們做了一系列的實驗去探討奈米花的形成機制,這些實驗包括了在不同反應時間所得到的奈米花形態、在反應中添加保護劑與在通Ar氣體和通氧氣的情況下進行反應所得的結果。最後我們利用一種陽離子型的界面活性劑去分離金銅中空奈米球與奈米花,達到純化的目的

     Flower-like nanostructures of botallackite Cu2(OH)3Cl have been synthesized in the solution with the aid of Au-Cu hollow nanospheres. The nanoflowers are three-dimensional nanostructures with several hundreds nanometers in size and contain tens of self-organization layered petals. Formation of botallackite Cu2(OH)3Cl nanoflowers was strongly associated with the presence of Au-Cu hollow nanospheres. The morphologied and composition of hollow and nanoflowers have been characterized by SEM, TEM, HR-TEM, SAED, EDX and XRD. We had controlled the time of reaction to get the time-dependent evolution of nanoflowers;and gone on adding protective agent experiments , in argon condition and in oxygen condition experiment to discuss the nanoflower’s formation mechanism. Finally, we utilized a cationic surfactant to separated hollow nanospheres and nanoflowers.

    中文摘要......................................................I 英文摘要……………….……………………………………………………Ⅱ 圖目錄……………………………………………………………………….Ⅲ 第一章 緒論…………………..……………………………………….1 1.1 奈米科技與奈米材料………………………………………………1 1.2 奈米科技的應用與發展……………………………………………3 1.2.1 奈米在生物醫學的應用.………………………………….3 1.2.2 奈米磁性物質……….…………………………………….4 1.2.3 奈米碳管………….……………………………………….6 1.2.4 自組裝技術………………………………………………….7 1.3 銅奈米結構簡介…………………………………………………..10 1.4 中空型奈米結構簡介..……………………………………………13 1.5 三維奈米結構:奈米花……………………………………………16 1.6 銅化合物:Cu2(OH)3Cl簡介………………………………………18 第二章 實驗部分……………………………………………………….20 2.1 研究動機與目的…………………………………………………..20 2.2 實驗藥品與儀器…………………………………………………..21 2.2.1 藥品……………………………………….….……………21 2.2.2 儀器………………………………………………………..21 2.3 實驗步驟…………………………………………………………..24 2.3.1 製備銅奈米粒子……..……………………………………24 2.3.2 製備中空型奈米球………………………………………..24 2.3.3 製備奈米花………………………………………………..25 2.3.4 三維奈米花與中空奈米球的分離………………………..25 2.3.5 奈米花形成機制探討……………………………………..26 第三章 結果和討論…………………………………………………….28 3.1 製備銅奈米粒子…………………………………………………..28 3.1.1 UV-vis分析…………………………………………………28 3.1.2 TEM分析.........................................28 3.2 製備金銅中空奈米球……………………………………………..29 3.2.1 UV-vis分析…………………………………………………29 3.2.2 TEM分析…………………………………………….......29 3.2.3 選區電子繞射(SAED)分析………………………………..30 3.2.4 Film-XRD分析……………………………………………..30 3.2.5 探討形成金銅合金的中空奈米球之反應機制……….….30 3.3 製備奈米花………………………………………………………..32 3.3.1 UV-Vis分析……………………………………………....32 3.3.2 SEM分析…………………………………………………...32 3.3.3 Film-XRD分析……………………………………………..33 3.3.4 TEM分析…………………………………………………...33 3.3.5 選區電子繞射(SAED)分析………………………………..34 3.3.6 HR-TEM分析………………………………………………..34 3.3.7 能量分散光譜儀(EDS)分析……………………………….34 3.4 奈米花與奈米空球的分離………………………………………..35 3.5 奈米花的形成機制探討…………………………………………..36 3.5.1 時間變因…………………………………………………..36 3.5.2 保護劑變因………………………………………………..38 3.5.3 對照實驗…………………………………………………..39 第四章 結論…………………………………………………………….56 參考文獻…………………………………………………………………57

    1. 張立德、牟季美著, “奈米材料和奈米結構”, 滄海書局, 民91
    2. C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Nano Lett., 2005, 5, 709
    3. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun, Nano Lett., 2005, 5, 379
    4. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc., 2004, 126, 273
    5. H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, Nano Lett., 2004, 4, 187
    6. D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, C. Zhou, Nano Lett., 2004, 4, 2151
    7. E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, G. Gruner, Nano Lett., 2005, 5, 757
    8. M. S. Wang, L. M. Peng, J. Y. Wang, Q. Chen, J. Phys. Chem. B, 2005, 109, 110
    9. G. Hashiguchi, T. Goda, M. Hosogi, K. Hirano, N. Kaji, Y. Baba, K. Kakushima, H. Fujita, Anal. Chem., 2003, 75, 4347
    10. C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, Nano Lett., 2004, 4, 345
    11. Y. W. Wang, B. H. Hong, J. Y. Lee, J. S. Kim, G. H. Kim, K. S. Kim, J. Phys. Chem. B, 2004, 108, 16723
    12. G. W. Ho, A. S. W. Wong, A. T. S. Wee, M. E. Welland, Nano Lett., 2004, 4, 2023
    13. H. T. Zhang, G. Wu, X. H. Chen, Langmuir, 2005, 21, 4281
    14. J. C. Yu, A. Xu, L. Zhang, R. Song, L. Wu, J. Phys. Chem. B, 2004, 108, 64
    15. L. Dong, T. Gushtyuk, J. Jiao, J. Phys. Chem. B, 2004, 108, 1617
    16. C. Yan, D. Xue, J. Phys. Chem. B, 2005, 109, 12358
    17. L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, D. Golberg, Adv. Mater., 2005, 17, 110
    18. B. Liu, H. C. Zeng, J. Am. Chem. Soc., 2004, 126, 8124
    19. M. Ichikawa, N. Wada, Jpn. J. Appl. Phys., 1976, 15, 755
    20. H. Hirai, H. Wakabrayashi, M. Komiyama, Bull. Chem. Soc. Jpn., 1986, 59, 367
    21. H. Hung, G. Q. Xu, W. Ji, Y. M. Kek, C. H. Chew, F. Q. Yan, P. S. Oh, S. H. Tang, Langmuir, 1997, 13, 172
    22. D. G. Eadon, J. A. Creighton, J. Chem. Soc. Farady. Trans., 1991, 87, 3881
    23. P. Pileni, I. Lisiecki, J. Am. Chem. Soc., 1993, 115, 3887
    24. I. Lisiecki, F. Billoudet, and M. P. Pileni, J. Phys. Chem., 1996, 100, 4160
    25. N. A. Dhas, C. P. Raj, A. Gedanken, Chem. Mater., 1998, 10, 1446
    26. M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, E. Wang, Chem. Commun., 2003, 1884
    27. Y. Chang, M. L. Lye, H. C. Zeng. Langmuir, 2005, 21, 3746
    28, (a) Y. H. Yeh, M. S. Yeh, Y. P. Lee, C. S. Yeh, Chem. Lett., 1998, 1183 (b) M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, C. S. Yeh, J. Phys. Chem. B, 1999, 103, 6851
    29. H. Hosono, Y. Abe, Appl. Phys. Lett., 1992, 60, 2613
    30. H. Hirai, Hidehiko, Wakabayshi, M. Komiyama, Chem. Lett., 1983, 1047
    31. H. Hirai, Hidehiko, Wakabayshi, M. Komiyama, Bull. Chem. Soc. Jpn., 1986, 59, 545
    32. Y. Chang, J. J. Teo, H. C. Zeng, Langmuir, 2005, 21, 1074
    33. Y. Sun, B. Wiley, Z. Y. Li, Y. Xia, J. Am. Chem. Soc., 2004, 126, 9399
    34. M. Wu, X. Pan, X. Qian, J. Yin, Z. Zhu, Inorganic Chemistry Communication, 2004, 7, 359
    35. H. T. Schmidt, B. L. Gray, P. A. Wingert, A. E. Ostafin, Chem. Mater., 2004, 16, 4942
    36. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, J. Am. Chem. Soc., 2002, 124, 7642
    37. Y. Sun, B. Mayers, Y. Xia, Adv. Mater., 2003, 15, 641
    38. L. Lu, G. Sun, S. Xi, H. Wang, H. Zhaug; Langmuir, 2003, 19, 3074
    39. Y. Sun, Y. Xia, Science, 2002, 298, 2176
    40. Y. Sun, B. Mayers,Y. Xia, Adv. Mater., 2003, 15, 641
    41. Y. Sun, B. Mayers, Y. Xia, Nano. Lett., 2002, 2, 481
    42. 陳信甫,”銅奈米粒子的探討:硫醇吸附的影響與金銅合金奈米空球的製備”,國立成功大學博碩士論文, 化學, 2003
    43. H. G. Yang, H. C. Zeng, J. Phys. Chem. B, 2004, 108, 3492
    44. Y. Yin, R. M. Rious, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science, 2004, 304, 711
    45. Smigelskas, A. D.; Kirkendall, E. O. Trans. Am. Inst. Min. Metall. Eng. 1947, 171, 130
    46. C. Burda, X. Chen, R. Narayanan, M. A. El-sayed, Chem. Rev., 2005, 105, 1025
    47. C. T. Campbell, S. C. Parker, D. E. Starr, Science, 2002, 298, 811
    48. Y. Chang, J. J. Teo, H. C. Zeng, Langmuir, 2005, 21, 1074
    49. V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science, 2001, 291, 2115
    50. Y. Wang, Y. Xia, Nano Lett., 2004, 4, 2047
    51. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M.
    Meyyappan, Science, 2003, 300, 1249
    52. Y. Cui, C. M. Lieber, Science, 2001, 291, 851
    53. S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature, 1998, 393, 49
    54. A. Chen, X. Peng, K. Koczkur, B. Miller, Chem. Commun., 2004, 1964
    55. X. L. Li, J. P. Ge, Y. D. Li, Chem. Eur. J., 2004, 10, 6163
    56. W. B. Zhao, J. J. Zhu, J. Z. Xu, H. Y. Chen, Inorganic Chemistry Communication, 2004, 7, 847
    57. Z. Zhang, X. Shao, H. Yu, Y. Wang, M. Han, Chem. Mater., 2005, 17, 332
    58. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P. M. Ajayan, Nature, 2002, 416, 495
    59. J. Cao, J. Wang, B. Fang, X. Chang, M. Zheng, H. Wang, Chemistry Letters, 2004, 33, 1332
    60. S. Li, H. Zhang, J. Xu, D. Yang, Materials Letters, 2005, 59, 420
    61. S. Liu, J. Yu, B. Cheng, Q, Zhang, Chemistry Letters, 2005, 34, 564
    62. A. M. Pollard, R. G. Thomas, P. A. Williams, Mineralog. Mag., 1989, 53, 557
    63. M. E. Fleef, Acta Cryst., 1975, B31, 183
    64. F. C. Hawthorne, Mineralog. Mag., 1985, 49, 87
    65. J. B. Parise, B, G, Hyde, Acta Cryst., 1986, C42, 1277
    66. H. R. Ostwald, W. Feitknecht, Helvetica Chimica Acta, 1964, 47, 273
    67. H. C. Lichtenegger, T. Schoberl, M. H. Bartl, H. Waite, G. D. Stucky, Science, 2002, 298, 398
    68. S. H. Lee, Y. S. Her, E. Matijevic, Journal of Colloid And Interface Science, 1997, 186, 193
    69. R. R. Clemente, C. J. Serna, M. Ocana, E. Matijevic, Journal of Crystal Growth, 1994, 143, 277
    70. C. L. Zhu, C. N. Chen, L. Y. Hao, Y. Hu, Z. Y. Chen, Journal of Crystal Growth, 2004, 263,473
    71. S. Kratohvil, E. Matijevic, J. Mater. Res., 1991, 6, 766
    72. Gale, W. F.; Totemeier T. C. Smithells Metals Reference Book, 8th ed.; Elsevier: Oxford, UK, 2004.
    73. GSAS: Larson A. C.; Von Dreele, R. B. General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, USA., 1994.

    下載圖示 校內:2007-07-06公開
    校外:2007-07-06公開
    QR CODE