| 研究生: |
郭秉奇 Kuo, Ping-Chi |
|---|---|
| 論文名稱: |
無閥式微泵之微擴流器/噴嘴流場分析及性能研究 Flow analysis and performance study of micro-diffuser/nozzle in valveless micro-pump |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 擴流器效率 、壓力損失係數 、平板形微擴流器/噴嘴 |
| 外文關鍵詞: | Pressure loss coefficient, Diffuser, Planar micro-diffuser/nozzle |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要目的為探討雷諾數在100~1500 的範圍內,平板形微擴流
器/噴嘴之壓力損失係數與流場變化。利用計算流體力學軟體FLUENT 針對細長比為2.5~15,擴張角為5°~100°之平板形擴流器/噴嘴進行穩態流場模擬,瞭解擴流器/噴嘴損失係數與流場變化之間的關係,並計算擴流器效率。同時進一步探討擴流器/噴嘴元件兩側銜接直管或儲液槽對損失係數及流場的影響。結果發現,就擴流器方向的流動而言,流場的分離導致回流的產生,不僅改變了分離點之後的速度分布,也一定程度降低了壁面剪應力的大小,造成擴流器損失係數在小擴張角及大擴張角範圍內呈現相反的變化趨勢。而噴嘴損失係數隨擴張角的變化則較單純,損失係數隨擴張角的增加而下降。擴張角在30° 以下,細長比為7.5 之擴流器/噴嘴元件,其擴流器效率均大於一,其中當擴張角為10° 時,擴流器效率為最佳。若增加其細長比,則可明顯改善擴流器效率。反之,若擴張角在50° 以上,則擴流器效率小於一,且其整流效率相當不理想。
Abstract
The primary purpose of this study is to investigate the pressure loss coefficient and the flow behavior of planar micro-diffusers/nozzles at low Reynolds numbers between 100 and 1500. Steady flow simulations of the diffusers/nozzles with diverging angles ranging from 5° to 100° and with slenderness ranging from 2.5 to 15 are done by using the computational fluid dynamics package FLUENT. Computational results help to identify the relationship between the pressure loss coefficient and the flow behavior and are used to calculate the diffuser efficiency. We also compare the difference between the diffusers/nozzles connected between two reservoirs and two
parallel ducts. Results show that, in the diffuser direction, flow separation induces a back flow and changes the velocity distribution and, therefore, the magnitude of wall shear stress after the separation point. These effects lead to opposite trends of the variation of pressure loss coefficient for small and large diffuser angles. On the other hand, the pressure loss coefficient of the nozzle flow simply decreases with increasing diverging angle for all Reynolds numbers. For diffusers/nozzles with a fixed slenderness of 7.5 and diverging angles less than 30° , the diffuser efficiencies are found all greater than one. The optimal efficiency of the diffuser is found at the diverging angle of 10°
and can be further improved by increasing the slenderness. For diverging angles greater than 50° , the diffuser efficiency is less than one and results in a poor rectification efficiency.
[1] Smith L, Micromachined nozzles fabricated with a replicative method, Conf. Proc. Micromechanics Europe 1990 (MME), Berlin, Germany, 1990, pp. 53-57.
[2] White F M, Fluid Mechanics, fifth ed., McGraw-Hill, Singapore, 1999.
[3] Idelchik I E, Handbook of Hydraulic Resistance, third ed., CRC Press, Boca Raton, FL, 1994.
[4] Cockrell D J, Markland E., A review of incompressible diffuser flow, Aircraft Engineering 35, 1963, 286-292.
[5] Artyushkina G K, On the hydraulic resistance during laminar fluid flow in conical diffusers, Tr. LPI no. 333, 1973, 104-106.
[6] Stemme E, Stemme G, A valveless diffuser/nozzle fluid pump, Sensors and Actuators A 39, 1993, 159-167.
[7] Gerlach T, Wurmus H, Working principle and performance of the dynamic micropump, Sensors and Actuators A 50, 1995, 135-140.
[8] Olsson A, Stemme G, Stemme E, A valve-less planar fluid pump with two pump chambers, Sensors and Actuators A 46-47, 1995, 549-556.
[9] Olsson A, Enoksson P, Stemme G, Stemme E, A valve-less planar pump isotropically etched in silicon, J. Micromech. Microeng. 6, 1996, 87-91.
[10] Olsson A, Stemme G, Stemme E, Diffuser-element design investigation for valve-less pumps, Sensors and Actuators A 57, 1996, 137-143.
[11] Olsson A, Enoksson P, Stemme G, Stemme E, Micromachined flat-walled valveless diffuser pumps, J. Micromech. Microeng. 6, 1997, 161-166.
[12] Jiang X N, Zhou Z Y, Huang X Y, Li Y, Yang Y, Liu CY, Micronozzle/diffuser flow and its application in micro valveless pumps, Sensors and Actuators A 70, 1998, 81-87.
[13] Olsson A, Stemme G, Stemme E, Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sensors and Actuators A 84, 2000, 165-175.
[14] Yang K S, Chen I Y, Shew B Y, Wang C C, Investigation of the flow characteristics within a micronozzle/diffuser, J. Micromech. Microeng. 14, 2004, 26-31.
[15] Singhal V, Garimella S V, Murthy J Y, Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps, Sensors and Actuators A 113, 2004, 226-235.
[16] Yamahata C, Lotto C, Al-Assaf E, Gijs M A M, A PMMA valveless micropump using electromagnetic actuation, Microfluid Nanofluid 1, 2005, 197-207.
[17] Xia F, Tadigadapa S, Zhang Q M, Electroactive polymer based microfluidic pump, Sensors and Actuators A 125, 2006, 346-352.
[18] Gerlach T, Microdiffusers as dynamic passive valves for micropump applications, Sensors and Actuators A 69, 1998, 181-191.
[19] Hao P F, Yao Z H, He F, Zhu K Q, Experimental investigation of water flow in smooth and rough silicon microchannels, J. Micromech. Microeng 16, 2006, 1397-1402.
[20] 徐瑞呈, “低雷諾數下微擴流器損失係數之量測”, 國立成功大學機械工程研究所碩士論文, 2006 .
[21] Shah R K, London A L, Laminar flow forced convection in ducts, ACADEMIC PRESS, INC., 1978.