| 研究生: |
曾嚴寬 Tseng, Yen-Kuan |
|---|---|
| 論文名稱: |
高嶺石及蒙脫石對鎘與鉛之吸附效應 Cd and Pb adsorptions by Kaolinite and Montmorillonite |
| 指導教授: |
楊懷仁
Yang, Huai-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 離子交換 、吸附 、蒙脫石 、高嶺石 、黏土礦物 |
| 外文關鍵詞: | cation exchange, adsorption, montmorillonite, clay minerals, kaolinite |
| 相關次數: | 點閱:130 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黏土礦物由四面體層 (Tetrahedral layer) 及八面體層 (Octahedral layer) 所組成。結構中 T/O 層的比例為1者稱為1:1型,若T/O 層的比例為2則稱為2:1型。結構中若發生陽離子取代效應,則可使黏土礦物帶負電荷而吸附其他陽離子以維持電荷平衡。此吸附效應可應用於復育被重金屬污染之環境。本研究中以黏土礦物 (高嶺石及蒙脫石) 與鎘及鉛溶液反應,探討溶液重金屬濃度和pH值對元素在此系統中分配情形之影響。研究中發現反應過程中溶液之鎘與鉛濃度的變化可分為兩種主要類型。pH值為2的鎘溶液,其鎘濃度會在溶液加入黏土礦物後,在靜置過程中會從200 ppb降到大約100 ppb。但震盪之後,鎘濃度又會回升至大約180 ppb。停止震盪後,鎘濃度又降回約100 ppb。造成此現象的原因為低pH值與表面吸附的共同影響,而不是層間離子交換。對大部分pH值大於4的溶液,鎘與鉛的濃度在反應的過程中下降,且不因震盪而脫附鎘與鉛,推測此現象應受層間離子交換所控制。三種黏土礦物對鎘之吸附效應由強而弱順序為鈣鎂蒙脫石-鈉蒙脫石-高嶺石;對鉛的吸附效應則依鈣鎂蒙脫石-高嶺石-鈉蒙脫石之次序遞減。此外,鈣鎂蒙脫石可以有效減少金瓜石酸性礦水洩流溶液中的鉛濃度,而古亭坑泥岩對溶液中鉛的吸附效應較高嶺土與蒙脫石強,可能與其成份中的伊萊石 (illite) 及有機物質有關。
Clay minerals are composed of tetrahedral (T) and octahedral (O) sheets. The ones with T/O ratio of 1 are referred to as 1:1 type, whereas those with T/O ratio of 2 are referred to as 2:1 types. Cation substitutions in the structures of clay minerals result in negative charges, which must absorb other cations to maintain charge balance. Such adsorptions bear implications on remedying heavy metal-contaminated environments. In this research, we carried out experiments of interactions between clay minerals (including kaolinite and montmorillonite) and Cd-Pb solutions to evaluate the controls of metal concentrations and pH values on elemental distributions between reactants. It is found that the Cd and Pb concentrations in solutions show two types of variations during reaction. The Cd concentration in the solution with low pH values of ~2 (in some cases, ~4) decreased from 200 ppb to ~100 ppb when the system was kept still, but increased to ~180 ppb after shaking the container. Ceasing shaking brought the Cd concentration back to ~100 ppb. This phenomenon is attributed to the combined effect of low pH value and surface adsorption instead of interlayer cation exchange. For most solutions with pH values of > 4, their Cd and Pb concentrations decreased as reaction proceeded without desorption after shaking. Such variation pattern is inferred to reflect the control of interlayer cation exchange. The abilities of adsorbing Cd and Pb increase in the orders of Kaolinite – Na-montmorillonite – Ca-Mg-montmorillonite and Na-montmorillonite – Kaolinite– Ca-Mg-montmorillonite, respectively. Ca-Mg-montmorillonite can effectively reduce the Pb content in the acid-mine-drainage from Chinkuashich and mudstone from the Gu-Ting-Kun formation bears Pb adsorption ability stronger than kaolinite and montmorillonite possibly reflecting the controls of illite and organic matters.
Abd-Elfattah, A., and Wada, K., 1981, Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J. Soil Sci., Vol 32, p.273-283
Alloway, B.J., 1995, Soil processes and the behaviour of metals. In B.J. Alloway (ed.) Heavy metals in soils. Blackie Academic & Professional, London, p.11-37
Altin, O., Ozbelge, O.H., and Dogu T., Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite: I. Experimental. 1999, Journal of Chemical Technology and Biotechnology, Vol 74, p.1131-1138
Anderson, P.R., and Christensen, T.H., 1988, Distribution coefficients of Cd, Co, Ni and Zn in soils. J. Soil Sci., Vol 39, p.15-22
Ayhan, D., 2004, Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication. Journal of Hazardous Materials, B109, p.221-226
Bakhti, A., Derriche, Z., Iddou, A., and Larid, M., 2001, A study of the factors controlling the adsorption of Cr(III) on modified montmorllonites. European Journal of Soil Science, Vol 52, p.683-692
Brady, N.C., and Weil, R.R., 1999, The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersey
Brigatti, M.F., Corradini, F., Franchini, G.C., Mazzoni S., Medici L., and Poppi L., 1995, Interaction between montmorillonite and pollutants from industrial waste-waters: exchange of Zn2+ and Pb2+ from aqueous solutions. Chemosphere, Vol 57, p.1237-1244
Carty, M., 1982, Trace inorganic material, chemistry for environmental engineering. Kein Tai Book Publishers Inc, Taipei, Taiwan, p.548-552
Chantawong, V., Harvey, N.W., and Bashkin, V.N., 2003, Comparison of heavy metal adsorptions by Thai Kaolin and Ballclay. Water, Air, and Soil Pollution, Vol 148, p.111-125
Costanzo, P.M., 2001, Baseline studies of the clay minerals society source clays: Introduction. Clays and clay minerals, Vol 49, No. 5, p.372-373
de Matos, A.T., Fontes, M.P.F., da Costa, L.M, and Martinez, M.A., 2001, Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian Soils. Environmental Pollution, Vol 111, p.429-435
Duffus, J.H., 2001, "Heavy metals"- A meaningless term. Chemistry International, Vol 23, No.6
Elkins, H. B., 1959, The chemistry of industrial toxicology. John Wiley and Sons, New York
Friberg, L., Nordberg, G.F., and Vouk, V.B., 1979, Handbook on the toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford, p.452-484
Gomes, P.C., Fontes, M.P.F., da Silva, A.G., Mendonca, E. de S., and Netto, A.R., 2001, Selectivity sequence and competitive adsorption of heavy metals by brazilian soils. Soil science society of America journal, Vol 65, 1115-1121
Hodgson, E., and Levi, P.E. 原著,陳吉平譯,最新毒理學,合計圖書出版社,2000,p.255-269
Hsu, P.H., 1989, Aluminum oxides and oxyhydroxides. In J.B. Dixon and S.B. Weed. (ed.) Minerals in soil environments. ASA and SSSA, Madison, WI, p.331-378
Johnson, D. B., and Hallberg, K.B., 2005, Acid mine drainage remediation options: a review. Science of the Total Environment, Vol 338, p.3-14
Li, Z., and Bowman, R.S., 2001, Retention of inorganic oxyanions by Organo-Kaolinite. Wat. Res., Vol 35, No.16, p.3771-3776
Lu, F.C. 原著,劉宗榮等譯,Basic Toxicology (基礎毒理學),藝軒圖書出版社,1996,p.344-351
McBride, M.B., 1994, Environmental chemistry of soils. Oxford University Press, New York
Mermut, A.R., and Cano, A.F., 2001, Baseline studies of the clay minerals society source clays: Chemical analyses of major elements. Clays and Clay Minerals, Vol 49, No.5, p.381-386
Moll, W.F., Jr. 2001, Baseline studies of the clay minerals society source clays: Geological origin. Clays and Clay Minerals, Vol 49, No. 5, p.374-380
Perkin Elmer, 2000, Analytical methods for atomic absorption spectrometry
Reddy, M.R., and Dunn, S.J., 1986, Distribution coefficients for nickel and zinc in soils. Environ. Pollut., Vol 11, p.303-313
Schnitzer, M., 1969, Reactions between fulvic acid, a soil humic compound and inorganic soil constituents. Soil Sci. Soc. Am. Proc., Vol 33, p.75-81
Schubert, J., 1948a, The use of ion exchangers for the determination of physical-chemical properties of substances, particularly radio-tracers, in solution, Part I. J. Phys. Coll. Chem., Vol 52, 340-350
Schubert, J., 1948b, The use of ion exchangers for the determination of physical-chemical properties of substances, particularly radio-tracers, in solution, Part II. J. Phys. Coll. Chem., Vol 52, 350-356
Schwertmann, U., and Taylor, R.M., 1989. Iron oxides. In J.B. Dixon and S.B. Weed (ed.) Minerals in soil environments. ASA and SSSA, Madison, WI, p.379-438
Sposito, G., 1989, The chemistry of soils. Oxford University Press, New York
Srivastava, P., Singh, B., and Angove, M., 2005, Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, Vol 290, p.28-38
Van, O.H., and Fripiat, J. J., 1979, Data handbook for clay materials and other non-metallic minerals. Clay Mineralogical Society. Pergamon Press, New York
Wang, Y., 1969, Atmospheric dust records in permanent snowfields: Implications to marine sedimentation: Geol. Soc. Amer. Bull., Vol 80, p.761-782
Yu, K.C., Tsai, L.J., Chen, S.H., Chang, D.J., and Ho, S.T., 2000, Frcation of heavy metals in sediment cores from the Ell-Ren river, Taiwan. Wat. Res., Vol 35, No.10, p.2417-2428
Yu, K.C., Tsai, L.J., Chen, S.H., Chang, D.J., and Ho, S.T., 2001, Multivariate corrrlations of geochemical binding phases of heavy metals in contaminated river sediment. J. Environ. SCI. Health, A36(1), p.1-16
Zhou, D.M., Wang, Y.J., Cang, L., Hao, X.Z., and Luo, X.S., 2004, Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. Chemosphere, Vol 57, p.1237-1244
尹順君,鎘的毒性研究:脂質過氧化作用與硒的抗氧化效應之探討,高雄醫學大學,2000
毛利成,台灣麥飯石提純處理與性質改進之研究,國立成功大學,2002
吉田要,高雄州旗山西南部油田調查報告,台灣總督府殖產局,1932,610號
朱輝耀,彰化及車籠埔斷層帶地下水地球化學初探,國立成功大學,2001
林宗儀,台灣南部古亭坑層中砂岩之沈積學,國立中山大學,1990
唐瑞菁,船隻使用含有機錫的漆料對沿海生態的影響,環境科學技術教育專刊,1996,第11 期
徐豪貝,利用多元素石墨爐原子吸收光譜儀直接且同時測定尿液中的鉍, 鉛, 鎘, 硒, 銻元素,國立清華大學,2004
張仲民,普通土壤學,國立編譯館,1988
張郇生,麥飯石探微--兼論膨潤石外形、特徵、及用途,經濟部中央地質調查所,地質,第十九卷第一期,1998,p.68-88
梁曉芳,鎘誘導人類正常肺細胞MRC-5細胞凋亡之探討,臺北醫學大學,2002
陳慶隆,酸鹼值、液固比與醋酸鹽濃度對飛灰中金屬溶出之影響,國立中興大學,2001
鳥居敬造,台南州新化油田調查報告,台灣總督府殖產局,1932,609號
葉顓銘、陳少燕、黃定鼎及黃浩仁,清理重金屬污染的植物,科學發展,380卷,p.44-49
鍾小良,二仁溪河水地球化學和同位素初探,國立成功大學,2002
簡錦樹,地下膠體與污染物之水化及生化反應過程:實驗調查(II),行政院國家科學委員會,2000
蘇青森,儀器學,五南圖書出版公司,2002
校內:2056-01-13公開