| 研究生: |
林威良 Lin, Wei-liang |
|---|---|
| 論文名稱: |
結合史托克參數法與基因演算法對扭轉向列型
液晶盒進行多參數之量測 Combining Stokes Parameters Method and Genetic Algorithm for Measuring the Cell Thickness, Twist Angle, Pretilt Angle, and Azimuth Angle of Twisted-Nematic Liquid Crystal Cells |
| 指導教授: |
羅裕龍
Lo, Yu-lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 扭轉角 、預傾角 、扭轉向列型液晶 、基因演算法 、史托克參數 、方位角 、厚度 |
| 外文關鍵詞: | genetic algorithm, cell thickness, azimuth angle, pretilt angle, stokes parameters, twisted-nematic liquid crystals., twist angle |
| 相關次數: | 點閱:142 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的研究中,史托克參數法常用於量測扭轉向列型液晶的各項參數。在這裡我們提出了一個方法,結合史托克參數法與基因演算法可計算出扭轉向列型液晶盒內的厚度、扭轉角、預傾角與方位角。對扭轉向列型液晶而言,其入射面液晶分子長軸方向與實驗座標X軸所夾的角度,可稱之為方位角。不同於過去文獻中在量測扭轉向列型液晶的各項參數時,皆受限於精確的初始方位角,而我們所提出的方法不需要事先知道精確的方位角,這就表示我們可以在任意的方位角下計算出扭轉向列型液晶盒內的厚度、扭轉角與預傾角,並且我們採用不同的線性偏振光當作我們的入射光源,經實驗證實也可取代多波長光源。
當線性偏振光穿透液晶盒之後,由於扭轉向列型液晶具有光學異向性和旋光性,原本的線性偏振態會發生改變。我們利用光學實驗架構與史托克偏光儀量測線性偏振光經過液晶盒之後的穿透光強度,並藉由史托克偏光儀將所量測到的穿透光強度快速轉換為史托克參數。最後,我們利用基因演算法計算在不同方位角下扭轉向列型液晶盒內的厚度、扭轉角與預傾角。
Here, we proposed a method that combining stokes parameters method and genetic algorithm for measuring the cell thickness, twist angle, pretilt angle and azimuth angle of twisted-nematic liquid crystal cells. The Jones matrix of the TN cell rotated around the axis parallel to the cell surface and perpendicular to the ray direction is derived here. Unlike the existing methods, they need to know the alignment directions of liquid crystal molecules at the cell substrates or provide multiple wavelengths. We can measure cell parameters in the TNLC cell at any degree of the azimuth angle without adjusting the azimuth angle to be a known value. Instead of multiple wavelengths, we choose horizontal linear polarized light and linear polarized light at 45 degree with respect to the x-axis as our input light.
The cell thickness, twist angle, pretilt angle and azimuth angle of twisted-nematic liquid crystal (TNLC) can be determined by genetic algorithm. As the results of the experimental data, the maximum standard deviations of the cell thickness Δd=0.0074μm, twist angle Δψ=0.1867 degree, pretilt angle Δθp=0.3457 degree and azimuth angle Δα=0.1648 degree at the azimuth angle α=90 degree. The maximum standard deviations of the cell thickness Δd=0.0084μm, twist angle Δψ=0.1982 degree, pretilt angle Δθp=0.3382 degree and azimuth angle Δα=0.1521 degree at the azimuth angle α=0 (180) degree.
Akahane, T., Kaneko, H., and Kimura, M., “Novel method of measuring surface torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys., vol. 35, p. 4434-4437, 1996.
Bahadur, B., Liquid crystals: applications and uses, World Scientific Publishing, vol.1, 1992.
Bahadur, B., Liquid crystals: applications and uses, World Scientific Publishing, vol.3, 1992.
Beasley, D., Bull, D. R., and Martin, R. R., An overview of genetic algorithm: part 1: fundamentals. University Computing, 1993.
Blinov, L. M., Chigrinov, V. G., and Blinov, L. M., Electrooptic effects in liquid crystal materials, New York: Springer-Verlag, 1994.
Cobb, H. G., “An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments,” NRL Memorandum Report 6760, 1990.
Chandrasekhar, S., Liquid Crystals, Cambridge University Press, 1992.
Cheng, S. T., Strain profile synthesis of fiber bragg gratings spectrum by the real-coded genetic algorithm, Master Thesis of Department of Electrical Engineering, National Cheng Kung University (2002).
Chae, J. S., and Moon, S. G., “Cell parameter measurement of a twisted-nematic liquid crystal by the spectroscopic method,” J. Appl. Phys., vol. 95, pp. 3250-3254, 2004.
Davis, L., Handbook of genetic algorithms. Van Nostrad Reinhold.
Durn, V., Lancis, J., Tajahuerce, E., and Jaroszewicz, Z., “Cell parameter determination of a twisted-nematic liquid crystal display by single-wavelength polarimetry, ” J. Appl. Phys. 97, 043101, 2005.
Gu, M., Smalyukh, I. I., and Lavrentovich, O.D., “Directed vertical alignment liquid crystal display with fast switching,” Appl. Phys. Lett., vol. 88, pp. 061110, 2006.
Holland, J. H., Adaption in Natural and Artificial Systems. Cambridge, MA: The M.I.T. Press, 1975.
Iimura, Y., Kobayashi, N., and Kobayashi, S., “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., vol. 33, pp. L434-L436, 1994.
Iimura, Y., Kobayashi, N., and Kobayashi, S., “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys., vol. 33, pp. L434-L436, 1996.
Kawamura, M., and Sato, S., “A near-infrared stokes parameter method for determining two-dimensional cell thickness and twist angle distributions of liquid crystal color displays,” Proceedings of SPIE, vol. 4799, pp. 170-177, 2002.
Kawamura, M., Goto, Y., and Sato, S., “A two-dimensional pretilt angle distribution measurement of twisted nematic liquid crystal cells using stokes parameters at plural wavelengths,” Jpn. J. Appl. Phys. vol. 43 pp. 709-714, 2004.
Kawamura, M., Goto, Y., and Sato, S., “Determination of anchoring energy in nematic liquid crystal cells with controllable twist anlges using a stokes parameter method”, Jpn. J. Appl. Phys., vol. 43, p. 6239-6242, 2004.
Kawamura, M., Goto, Y., and Sato, S., “Two-dimensional measurements of cell parameter distributions in reflective liquid crystal displays by using multiple wavelengths Stokes parameters,” J. Appl. Phys., vol. 95, pp. 4371-4375, 2004.
Lien, A., “Optimization of the Off-States for Single-Layer and Double-Layer General Twisted Nematic Liquid Crystal Displays,” IEEE Transactions on Electron Devices, vol. 36, pp.1910-1914, 1989.
Lien, A., “The general and simplified Jones matrix representations for the high pretilt twisted nematic cell,” J. Appl. Phys., vol. 67, pp.2853, 1990.
Lien, A. and Takano, H., “Cell gap measurement of filled twisted nematic liquid crystal displays by a phase compensation method,” J. Appl. Phys., vol. 69, pp. 1304-1309, 1991.
Mauguin, C., Bull. Soc. Franc. Mineral., vol. 34, pp.71-117., 1911.
Neto, L.G., Roberge, D., and Sheng, Y., “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35, 4567, 1996.
Nishioka, T., and Kurata, T., “Novel pretilt angle measurement method for twisted-nematic liquid crystal cells by apparent retardation measurement,” Jpn. J. Appl. Phys. vol. 40 pp. 6017-6023, 2001.
Pohl, L., Weber, G., Eidenschink, R., Baur , G., and Fehrenbach, W., “ Low-Δn-twisted nematic cell with improved optical properties,” Appl. Phys. Lett., vol. 38, pp. 497-499, 1981.
Schadt, M., and Helfrich, W., “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett., vol.18, pp.127, 1971.
Soutar, C., and Lu, K., “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704, 1994.
Tkachenko, V., Abbate, G., Marino, A., Vita, F., Giocondo, M., Mazzulla, A., Ciuchi, F., and Stefano, L. D., “Nematic liquid crystal optical dispersion in the visible-near infrared range” Mol. Cryst. Liq. Cryst., Vol.454, pp.263/[665]-271/[673],2006.
Wu, S. T., and Yang, D. K., Reflective Liquid Crystal Displays, John Wiley and Sons, 2001.
Wang, G. W., An Improved Stokes Parameters Method for Measurements of the Cell Thickness, Twist Angle and Azimuth Angle of Twisted-Nematic Liquid Crystal Cells, Master Thesis of Institute of Micro-Electro-Mechanical-System Engineering, National Cheng Kung University (2006).
Yariv, A., and Yeh, P., Optical Waves in Crystals, Wiley, 1984.
Yokoyama, H., and van Sprang, H. A., “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high fields,” J. Appl. Phys., vol.57, pp.4520-4526, 1985.
Yeh, P., and Gu, C., Optics of Liquid Crystal Displays, Wiley Interscience Publication, New York, 1999.
Yu, T. C., and Lo, Y. L., “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technology vol.25, no.3, march 2007.
Zhou, Y., He, Z., and Sato, S., “A novel method for determining the cell thickness and twist angle of a twisted nematic cell by stokes parameter measurement,” Jpn. J. Appl. Phys., vol. 36, pp.2760-2764, 1997.
Zhou, Y., He, Z., and Sato, S., “A improved stokes parameter method for determination of cell thickness and twist angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys., vol, 37, pp. 2567-2571, 1998.