| 研究生: |
蔡昀翰 Tsai, Yun-Han |
|---|---|
| 論文名稱: |
在具有不同緩衝層之(001)矽基板上成長鐵酸鉍及其鐵電性質之研究 The Study on Ferroelectric Properties of Bismuth Ferrite Grown on (001) Si Substrate With Different Buffer Layers |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 緩衝層 、鐵酸鉍 、鐵電性質 、薄膜成長 、射頻磁控濺鍍法 |
| 外文關鍵詞: | Buffer layer, BiFeO3, Ferroelectric, Film growth, Sputtering |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目標是在矽基板上以射頻磁控濺鍍法製備鐵電性質良好的鐵酸鉍(BiFeO3)薄膜,為了量測鐵酸鉍薄膜的鐵電性質,需要在矽基板和鐵酸鉍之間鍍上一層底電極,然而,矽基板在空氣中表面常會自然形成非晶二氧化矽,造成底電極不易沉積在矽基板上,因此,有時候會需要在矽基板和底電極之間再成長一層緩衝層(Buffer layers)幫助薄膜成長。綜合上述,本實驗根據文獻找到三種不同的緩衝層,並分別濺鍍於矽基板上。首先是以金屬鈦靶材通入氮氣進行反應濺鍍合成出氮化鈦(TiN)薄膜,XRD分析結果可以觀察到TiN有(200)擇優取向,並且以四點探針量測,其電阻率為4.05*10-5 Ω·cm,擁有非常好的導電性,可以作為底電極兼緩衝層;接下來找到另一個金屬氧化物材料鎳酸鑭(LaNiO3),LaNiO3(~3.84Å)與BiFeO3(~3.96Å)晶格匹配度很高,且LaNiO3製程完後在氧氣環境下退火,其電阻率為6.00*10-4 Ω·cm,也很適合當作底電極以及緩衝層;最後是用金屬鋱靶材以1.4 nm/min鍍率沉積出具有(222)擇優取向的氧化鋱(Tb2O3)薄膜,其表面非常平坦,Ra值為0.83 nm,Rq值為1.06 nm,而氧化鋱本身不導電,若要使用需要在上方再鍍一層底電極,但是它在矽基板上很好成長且有優異的取向,作為緩衝層還是非常有潛力的。三種緩衝層中,於LaNiO3/Si(100)基板上成長的BiFeO3薄膜,經過調控濺鍍參數,在成長溫度700℃、BiFeO3靶材功率100 W、氧分壓1.2 mTorr時有好的鐵電性質,有98 μC/cm2的殘餘極化量和475 kV/cm的矯頑電場。此外還嘗試在量測電滯曲線時,將BiFeO3/LaNiO3/Si(100)薄膜上的頂電極白金(Pt)換成鍍黃金(Au),可以得到最良好的鐵電性質,有131 μC/cm2的殘餘極化量和528 kV/cm的矯頑電場。
The aim of this paper is to fabricate high quality BiFeO3 (BFO) thin films with excellent ferroelectric properties on silicon substrates using radio frequency magnetron sputtering. However, amorphous silicon dioxide is often formed on the surface of the silicon substrate in air, making it difficult for the bottom electrode to be deposited on the silicon substrate. Therefore, sometimes it is necessary to grow a buffer layer between the silicon substrate and the bottom electrode to help the film grow. Based on the above, this experiment found three different buffer layers according to the literature, and sputtered them on the silicon substrate respectively. Firstly, TiN thin films were synthesized by sputtering using a titanium metal target and nitrogen gas. X-ray diffraction analysis showed a (200) preferred orientation for TiN, and four-point probe measurements revealed a resistivity of 4.05*10-5 Ω·cm, indicating excellent conductivity, making it suitable as a buffer layer and bottom electrode. Secondly metal oxide material, LaNiO3 (LNO), was found to have a high lattice matching with BFO (LNO ~ 3.84 Å, BFO ~ 3.96 Å), and its resistivity is 6.00*10-4 Ω·cm, which is also suitable as the bottom electrode and buffer layer. Finally, Tb2O3 thin films with a (222) preferred orientation were deposited using a terbium metal target at a deposition rate of 1.4 nm/min. The Tb2O3 film exhibited a very flat surface with an Ra value of 0.83 nm and Rq value of 1.06 nm. However, it is not conductive by itself , and if it is to be used, a bottom electrode needs to be deposited on top of it. Nevertheless, it grows well on the silicon substrate and has an unique orientation, so it still has great potential as a buffer layer. The BFO thin film grown on the LNO/Si(100) substrate demonstrated good ferroelectric properties, with a remnant polarization of 98 μC/cm2 and coercive field of 475 kV/cm. Additionally, when the platinum top electrode was replaced by gold, best ferroelectric properties were observed, with a remnant polarization of 131 μC/cm2 and coercive field of 528 kV/cm.
[1] N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics, Science, 309 (2005) 391-392.
[2] C.-C. Lee, J.-M. Wu, C.-P. Hsiung, Highly (110)-and (111)-oriented Bi Fe O 3 films on Ba Pb O 3 electrode with Ru or Pt∕ Ru barrier layers, Applied physics letters, 90 (2007) 182909.
[3] S. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. Schlom, Y. Lee, Y. Chu, M. Cruz, Q. Zhan, T. Zhao, Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO 3 films for memory applications, Applied physics letters, 87 (2005) 102903.
[4] M.M. Kumar, V. Palkar, K. Srinivas, S. Suryanarayana, Ferroelectricity in a pure BiFeO 3 ceramic, Applied Physics Letters, 76 (2000) 2764-2766.
[5] W.-J. Lin, W.-C. Chang, X. Qi, Exchange bias and magneto-resistance in an all-oxide spin valve with multi-ferroic BiFeO3 as the pinning layer, Acta materialia, 61 (2013) 7444-7453.
[6] C. Wang, M.H. Kryder, Low Fatigue in Epitaxial Pb (Zr 0.2 Ti 0.8) O 3 on Si Substrates with LaNiO 3 Electrodes by RF Sputtering, Journal of electronic materials, 38 (2009) 1921-1925.
[7] 于仁红, 蒋明学, TiN 的性质, 用途及其粉末制备技术, 耐火材料, 39 (2005) 386-389.
[8] 吳金俊, 沉積鎳酸鑭奈米柱狀晶緩衝層應用於鎳鋅鐵氧-鐵酸鉍複合材料薄膜之成長, 材料科學及工程學系, 國立成功大學, 台南市, 2018, pp. 83.
[9] C. Wang, Preparation and Characterization of Epitaxial Conductive Nb-SrTiO 3 Thin Films on Si Substrates, Journal of electronic materials, 39 (2010) 187-190.
[10] W.-H. Sheu, S.-T. Wu, Epitaxial growth of TiN (100) on Si (100) by reactive magnetron sputtering at low temperature, Japanese journal of applied physics, 37 (1998) 3446.
[11] C. Wang, M.H. Kryder, Epitaxial growth and resistive switching properties of BaTiO3 on (0 0 1) Si by RF sputtering, Journal of Physics D: Applied Physics, 41 (2008) 245301.
[12] J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, T. Zheleva, Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition, Applied physics letters, 61 (1992) 1290-1292.
[13] C. Wang, M.H. Kryder, Epitaxial growth of LaNiO3 thin films on Si substrates using rf sputtering, Physica Scripta, 78 (2008) 035601.
[14] T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, W.W. Scott, Binary alloy phase diagrams, American society for metals Metals Park, OH1986.
[15] J. Pelleg, L. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin solid films, 197 (1991) 117-128.
[16] J. Narayan, B. Larson, Domain epitaxy: A unified paradigm for thin film growth, Journal of Applied Physics, 93 (2003) 278-285.
[17] E. D’Anna, G. Leggieri, A. Luches, M. Martino, A. Drigo, I. Mihailescu, S. Ganatsios, Synthesis of pure titanium nitride layers by multipulse excimer laser irradiation of titanium foils in a nitrogen‐containing atmosphere, Journal of applied physics, 69 (1991) 1687-1696.
[18] H. Xin, S. Mridha, T. Baker, The effect of laser surface nitriding with a spinning laser beam on the wear resistance of commercial purity titanium, Journal of materials science, 31 (1996) 22-30.
[19] U. Oh, J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films, Journal of Applied Physics, 74 (1993) 1692-1696.
[20] Y. Gong, R. Tu, T. Goto, Laser chemical vapor deposition of titanium nitride films with tetrakis (diethylamido) titanium and ammonia system, Surface and Coatings Technology, 204 (2010) 2111-2117.
[21] R. Sun, K. Makise, W. Qiu, H. Terai, Z. Wang, Fabrication of (200)-oriented TiN films on Si (100) substrates by DC magnetron sputtering, IEEE Transactions on Applied Superconductivity, 25 (2014) 1-4.
[22] J. Greene, J.E. Sundgren, L. Hultman, I. Petrov, D. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Applied physics letters, 67 (1995) 2928-2930.
[23] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano letters, 8 (2008) 4670-4674.
[24] R. Sánchez, M. Causa, A. Caneiro, A. Butera, M. Vallet-Regi, M. Sayagués, J. González-Calbet, F. Garcia-Sanz, J. Rivas, Metal-insulator transition in oxygen-deficient LaNiO 3− x perovskites, Physical review B, 54 (1996) 16574.
[25] L. Qiao, X. Bi, Direct observation of Ni3+ and Ni2+ in correlated LaNiO3− δ films, Europhysics Letters, 93 (2011) 57002.
[26] A. Tiwari, K. Rajeev, Electrical transport in, Journal of Physics: Condensed Matter, 11 (1999) 3291.
[27] J. Ibáñez, J.Á. Sans, V. Cuenca-Gotor, R. Oliva, Ó. Gomis, P. Rodríguez-Hernández, A. Muñoz, U. Rodríguez-Mendoza, M. Velázquez, P. Veber, Structural and lattice-dynamical properties of Tb2O3 under compression: a comparative study with rare earth and related sesquioxides, Inorganic Chemistry, 59 (2020) 9648-9666.
[28] L. Li, S. Wang, G. Mu, X. Yin, L. Yi, Multicolor light-emitting devices with Tb2O3 on silicon, Scientific Reports, 7 (2017) 42479.
[29] J.-H. Lee, M.-A. Oak, H.J. Choi, J.Y. Son, H.M. Jang, Rhombohedral–orthorhombic morphotropic phase boundary in BiFeO3-based multiferroics: first-principles prediction, Journal of Materials Chemistry, 22 (2012) 1667-1672.
[30] G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite, Advanced materials, 21 (2009) 2463-2485.
[31] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. Cruz, Y. Chu, C. Ederer, N. Spaldin, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nature materials, 5 (2006) 823-829.
[32] D.C. Arnold, K.S. Knight, F.D. Morrison, P. Lightfoot, Ferroelectric-paraelectric transition in BiFeO 3: crystal structure of the orthorhombic β phase, Physical Review Letters, 102 (2009) 027602.
[33] H. Yang, Y. Wang, H. Wang, Q. Jia, Oxygen concentration and its effect on the leakage current in BiFeO 3 thin films, Applied Physics Letters, 96 (2010) 012909.
[34] M. Morozov, N. Lomanova, V. Gusarov, Specific features of BiFeO 3 formation in a mixture of bismuth (III) and iron (III) oxides, Russian journal of general chemistry, 73 (2003) 1676-1680.
[35] Y. Wang, L. Zhou, M. Zhang, X. Chen, J.-M. Liu, Z. Liu, Room-temperature saturated ferroelectric polarization in BiFeO 3 ceramics synthesized by rapid liquid phase sintering, Applied Physics Letters, 84 (2004) 1731-1733.
[36] J. Wu, J. Wang, BiFeO3 thin films of (1 1 1)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si (1 0 0) substrates, Acta Materialia, 58 (2010) 1688-1697.
[37] H. Shima, H. Naganuma, S. Okamura, Optical properties of multiferroic BiFeO3 films, Materials Science-Advanced Topics, (2013) 33-61.
[38] 田民波, 颜怡文, 薄膜技術與薄膜材料, 五南图书出版公司2007.
[39] A. Olayinka Oluwatosin, A. Esther Titilayo, O. Oluseyi Philip, A. Stephen, U. Albert Uchenna, Overview of thin film deposition techniques, AIMS Materials Science, 6 (2019) 174-199.
[40] R. Perez garcia, Controlled Deposition of Fullerenes: Effects of Topological nano-Modifications of a Surface on Aggregation and Growth Phenomena, 2018.
[41] B. Movchan, A.V. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM, Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). (1969).
[42] R. Messier, A. Giri, R. Roy, Revised structure zone model for thin film physical structure, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2 (1984) 500-503.
[43] J.A. Thornton, High rate thick film growth, Annual review of materials science, 7 (1977) 239-260.
[44] 羅易平, 鉍銅硒氧薄膜製備及結構分析, 材料科學及工程學系, 國立成功大學, 台南市, 2017, pp. 87.
[45] 林蔚叡, 以鐵酸鉍複鐵式材料為釘札層製作全氧化物自旋閥之研究, 材料科學及工程學系, 國立成功大學, 台南市, 2014, pp. 121.
[46] J. Epp, X-ray diffraction (XRD) techniques for materials characterization, Materials characterization using nondestructive evaluation (NDE) methods, Elsevier2016, pp. 81-124.
[47] W. Zhou, R. Apkarian, Z.L. Wang, D. Joy, Fundamentals of scanning electron microscopy (SEM), Scanning Microscopy for Nanotechnology: Techniques and Applications, (2007) 1-40.
[48] S. Liu, Y. Wang, Application of AFM in microbiology: a review, Scanning, 32 (2010) 61-73.
[49] A.S. Badami, Morphological and Structure-Property Analyses of Poly (arylene ether sulfone)-Based Random and Multiblock Copolymers for Fuel Cells, Virginia Tech, 2007.
[50] N.W. Gray, M.C. Prestgard, A. Tiwari, Tb2O3 thin films: An alternative candidate for high-k dielectric applications, Applied Physics Letters, 105 (2014).
[51] R. Moubah, O. Rousseau, D. Colson, A. Artemenko, M. Maglione, M. Viret, Photoelectric effects in single domain BiFeO3 crystals, Advanced Functional Materials, 22 (2012) 4814-4818.