簡易檢索 / 詳目顯示

研究生: 高孝瑄
Kao, Hsiao-Hsuan
論文名稱: 碳氫預混火焰在不鏽鋼−鉑分段式反應器之燃燒特性與性能優化研究
Study on combustion characteristics and performance optimization of hydrocarbon premixed flames in stainless steel−platinum segmentation reactor
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 98
中文關鍵詞: 不鏽鋼/白金觸媒微管燃燒器熱力學第二定律效率克里金代理優化模型
外文關鍵詞: Stainless steel−platinum segmentation micro combustor, Entropy, Kriging model, Combustion-based second law efficiency, Combustor designs
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討具有穿孔之不鏽鋼/白金觸媒微管燃燒器的燃燒性能與優化研究。由於燃燒過程會伴隨著化學反應、熱傳導與質量擴散等不可逆性的過程發生,而這些不可逆性的過程稱之為熵。熵之生成會造成能量損失,然而這些能量損失無法藉由實驗測得求得,因此需要藉著模擬之幫助以探討微反應器內部能量損失之來源。藉著分析熵生成率之後,可以進一步求得微燃燒器的熱力學第二定律效率,以判別燃燒器性能。
    繼前人的研究得知,帶有穿孔式的不鏽鋼/白金觸媒微管將有利於火焰穩住於微反應器中,其原因在於孔洞的設計能提供微反應器一個低速帶且有利於內、外兩流道之流體混合。然而,孔洞數量與孔徑大小之研究尚未深入探討,因此本研究提出三種不同之燃燒器設計,依固定白金面積設計出4個與6個孔洞數量,旨在探討白金用量相近的情況下,孔洞數量對於燃燒性能之影響,並以4個孔洞之設計探討孔徑大小,孔徑直徑分別為1公厘和1.5公厘。
    然而,本研究提出3種燃燒器的孔洞設計以及針對會影響燃燒效率的四種參數進行探討,其中討論的參數包含甲烷/空氣的流速、氫氣/空氣的流速、甲烷/空氣的當量比,以及氫氣/空氣的當量比。隨著操作區間的搭配,將會有許多參數組合,若要探討所有排列組合條件的性能,勢必會浪費許多時間與金錢。因此本研究利用克里金代理優化模型協助以較少的組數得到然燃燒效率的趨勢,並且能以一定量的實驗組數去建立優化模型。其中,所建立的克里金代理優化模型可以成功預測3種燃燒器的燃燒效率,以及其燃燒模態的區間界定。例如,在六個孔洞設計中,氫氣/空氣速度、甲烷/空氣速度、甲烷/空氣的當量比與氫氣/空氣的當量比的敏感性係數值分別為 -1.7、-0.22、0.4 和 0.15。代表氫氣/空氣的當量比在六個孔洞設計中將影響燃燒效率甚大。

    This study discusses the combustion performance and optimization of stainless steel−platinum segmentation micro combustors. The combustion processes accompany irreversibilities such as chemical reaction, heat conduction, and mass diffusion. These irreversibilities are so-called entropy generation. The generation of entropy will cause energy loss. Still, these energy losses cannot be determined throughout conducting experiments. The insight of energy losses in the microreactor needs to be explored with simulation assistance. By analyzing the entropy generation rate, the combustion-based second law efficiency of the stainless steel−platinum segmentation micro combustor can be further obtained to determine the combustion performance of the micro combustor.
    From the previous studies, the stainless steel−platinum segmentation micro combustor was well-known that flames could be stabilized in the microreactor. The reason is that the design of the perforated holes can provide a low-velocity zone to facilitate the flow mixing between the inner and outer tubes. However, the research on the pore number and size of the perforated hole array has not been thoroughly explored. Therefore, this study proposed three different combustor designs. The pore numbers of 4 and 6 holes were designed according to the fixed platinum catalyst area. According to the fixed platinum catalyst area, the pore number of the perforated holes is to explore the influences on the combustion performance. Also, the parameter of the pore diameter was chosen as 1 mm and 1.5 mm in diameter to investigate the effect on combustion performance.
    Three kinds of microreactor designs and four parameters will affect combustion efficiency. The inlet velocities of the methane−air mixture, the inlet velocity of the hydrogen−air mixture, the equivalence ratio of the methane−air mixture, and the equivalence ratio of the hydrogen−air mixture were discussed in this study. There will be many parameter combinations in the permutation of the operating condition. If all conditions were implemented, it would cost colossal time and expense. Therefore, this research employed the Kriging surrogate optimization model to predict the combustion efficiency tendency with fewer experimental runs. Utilizing the Kriging model can also obtain the sensitivity coefficient of the parameters and demonstrate the most influential parameter on combustion efficiency. For example, the sensitivity coefficients for H2−air velocity, CH4−air velocity, ERH2 and ERCH4 in six percolated holes design are −1.7, −0.22, 0.4, and 0.15, respectively. It represents the ERH2 is dominant in the combustion efficiency of the six percolated holes design.

    Content 摘要 I Abstract II Nomenclature V List of Tables 1 List of Figures 2 Chapter 1 Introduction 5 1-1 In need of the micro combustion 5 1-2 Definition of the micro combustion 7 1-3 The challenges and solutions of the micro combustion 8 1.3.1 Effect of the heat and flow recirculation 9 1.3.2 Optimization of flow and heat transfer by changing the internal structure of the combustor 13 1.3.3 Effect of the hydrogen addition 17 1.3.4 Effect of the catalytic combustion 17 1-4 Advantages of the catalytic combustion 20 1-5 Motivation 21 1-6 Objective 22 1-7 Optimization method 23 Chapter 2 Methodology 25 2-1 Description of the combustor 25 2-2 Measurement systems 29 2-3 Numerical model 30 2-4 Grid independent test 33 2-5 Validation of the simulation 34 2-6 Mathematical model of the Kriging method 36 Chapter 3 Combustion Characteristics and Operating Range of the Micro combustor 39 Chapter 4 Optimization 47 4.1 Optimization of six percolated holes 49 Chapter 5 Entropy generation analysis 60 5.1 Exergy 62 5.2 Irreversibility 63 5.3 Combustion-based second-law efficiency 63 5.4 Entropy generation induced by chemical reaction 64 5.5 Entropy generation induced by heat conduction 69 Chapter 6 Conclusion 79 Reference 82 Appendix 1 91 Appendix 2 95 Appendix 3 96

    [1] Chen C-P, Chao Y-C, Wu C-Y, Lee J-C, Chen G-B. Development of a catalytic hydrogen micro-propulsion system. Combustion Science and Technology. 2006;178:2039-60.
    [2] Boyarko GA, Sung C-J, Schneider SJ. Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications. Proceedings of the Combustion Institute. 2005;30:2481-8.
    [3] Aichlmayr HT, Kittelson DB, Zachariah MR. Micro-HCCI combustion: experimental characterization and development of a detailed chemical kinetic model with coupled piston motion. Combustion and Flame. 2003;135:227-48.
    [4] Srinivasan R, Hsing IM, Berger PE, Jensen KF, Firebaugh SL, Schmidt MA, et al. Micromachined reactors for catalytic partial oxidation reactions. AIChE Journal. 1997;43:3059-69.
    [5] Norton D. Design and development of portable microchemical power generators [Ph.D.]. Ann Arbor: University of Delaware; 2005.
    [6] Ju Y, Maruta K. Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science. 2011;37:669-715.
    [7] Dunn-Rankin D, Leal EM, Walther DC. Personal power systems. Progress in Energy and Combustion Science. 2005;31:422-65.
    [8] Fernandez-Pello AC. Micropower generation using combustion: Issues and approaches. Proceedings of the Combustion Institute. 2002;29:883-99.
    [9] Yetter RA, Yang V, Wu MH, Wang Y, Milius D, Aksay IA, et al. Combustion issues and approaches for chemical micro thrusters. 2007;6:393-424.
    [10] Chen J, Yan L, Song W, Xu D. Effect of heat and mass transfer on the combustion stability in catalytic micro-combustors. Applied Thermal Engineering. 2018;131:750-65.
    [11] Zimont V. Theoretical study of self-ignition and quenching limits in a catalytic micro-structured burner and their sensitivity analysis. Chemical Engineering Science. 2015;134:800-12.
    [12] Kizaki Y, Nakamura H, Tezuka T, Hasegawa S, Maruta K. Effect of radical quenching on CH4/air flames in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute. 2015;35:3389-96.
    [13] Norton DG, Vlachos DG. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures. Chemical Engineering Science. 2003;58:4871-82.
    [14] Raimondeau S, Norton D, Vlachos DG, Masel RI. Modeling of high-temperature microburners. Proceedings of the Combustion Institute. 2002;29:901-7.
    [15] Bagheri G, Hosseini SE, Wahid MA. Effects of bluff body shape on the flame stability in premixed micro-combustion of the hydrogen-air mixture. Applied Thermal Engineering. 2014;67:266-72.
    [16] Chen J, Yan L, Song W, Xu D. Effect of heat recirculation on the combustion stability of methane-air mixtures in catalytic micro-combustors. Applied Thermal Engineering. 2017;115:702-14.
    [17] Ronney PD. Analysis of non-adiabatic heat-recirculating combustors. Combustion and Flame. 2003;135:421-39.
    [18] Zhong B-J, Wang J-H. Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors. Combustion and Flame. 2010;157:2222-9.
    [19] Kim NI, Kato S, Kataoka T, Yokomori T, Maruyama S, Fujimori T, et al. Development and Scale Effects of Small-Size Swiss-roll Combustors as Heat Sources. 5th Asia-Pacific Conference on Combustion, ASPACC 2005: Celebrating Prof Bob Bilger's 70th Birthday. 2005.
    [20] Ju Y, Choi CW. An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels. Combustion and Flame. 2003;133:483-93.
    [21] Kim NI, Kato S, Kataoka T, Yokomori T, Maruyama S, Fujimori T, et al. Flame stabilization and emission of small Swiss-roll combustors as heaters. Combustion and Flame. 2005;141:229-40.
    [22] Bagheri G, Hosseini SE. Impacts of inner/outer reactor heat recirculation on the characteristic of micro-scale combustion system. Energy Conversion and Management. 2015;105:45-53.
    [23] Niu J, Ran J, Li L, Du X, Wang R, Ran M. Effects of trapezoidal bluff bodies on blow out limit of methane/air combustion in a micro-channel. Applied Thermal Engineering. 2016;95:454-61.
    [24] Russi MJ, Cornet I, Cornog R. The influence of flame holder temperature on flame stabilization. Symposium (International) on Combustion. 1953;4:743-8.
    [25] Wan J, Fan A, Maruta K, Yao H, Liu W. Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body. International Journal of Hydrogen Energy. 2012;37:19190-7.
    [26] Fan A, Wan J, Liu Y, Pi B, Yao H, Maruta K, et al. The effect of the blockage ratio on the blow-off limit of a hydrogen/air flame in a planar micro-combustor with a bluff body. International Journal of Hydrogen Energy. 2013;38:11438-45.
    [27] Fan A, Wan J, Maruta K, Yao H, Liu W. Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body. International Journal of Heat and Mass Transfer. 2013;66:72-9.
    [28] Zhang L, Zhu J, Yan Y, Guo H, Yang Z. Numerical investigation on the combustion characteristics of methane/air in a micro-combustor with a hollow hemispherical bluff body. Energy Conversion and Management. 2015;94:293-9.
    [29] Wan J, Fan A, Yao H, Liu W. Flame-anchoring mechanisms of a micro cavity-combustor for premixed H2/air flame. Chemical Engineering Journal. 2015;275:17-26.
    [30] Li Y-H, Chen G-B, Hsu H-W, Chao Y-C. Enhancement of methane combustion in microchannels: Effects of catalyst segmentation and cavities. Chemical Engineering Journal. 2010;160:715-22.
    [31] Wan J, Fan A, Liu Y, Yao H, Liu W, Gou X, et al. Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities. Combustion and Flame. 2015;162:1035-45.
    [32] Zhang P, Ran J, Li L, Du X, Qi W, Niu J, et al. Effects of convex cavity structure, position and number on conversion of methane catalytic combustion and extinction limit in a micro-channel: A numerical study. Chemical Engineering and Processing: Process Intensification. 2017;117:58-69.
    [33] Liu Z, Xiong Y, Zhu Z, Zhang Z, Liu Y. Effects of hydrogen addition on combustion characteristics of a methane fueled MILD model combustor. International Journal of Hydrogen Energy. 2022;47:16309-20.
    [34] Benaissa S, Adouane B, Ali SM, Mohammad A. Effect of hydrogen addition on the combustion characteristics of premixed biogas/hydrogen-air mixtures. International Journal of Hydrogen Energy. 2021;46:18661-77.
    [35] Tang A, Xu Y, Pan J, Yang W, Jiang D, Lu Q. Combustion characteristics and performance evaluation of premixed methane/air with hydrogen addition in a micro-planar combustor. Chemical Engineering Science. 2015;131:235-42.
    [36] Zhang Y, Zhou J, Yang W, Liu M, Cen K. Effects of hydrogen addition on methane catalytic combustion in a microtube. International Journal of Hydrogen Energy. 2007;32:1286-93.
    [37] Huang Z, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combustion and Flame. 2006;146:302-11.
    [38] Sankaran R, Im HG. Effects of hydrogen addition on the markstein length and flammability limit of stretched methane/air premixed flames. Combustion Science and Technology. 2006;178:1585-611.
    [39] Li Y-H, Peng K-H, Kao H-H. Interaction between flow structure and chemical reaction around the perforated gap of stainless steel–platinum catalytic partition reactor. International Journal of Heat and Mass Transfer. 2021;176:121418.
    [40] Li L, Wang S, Zhao L, Fan A. A numerical investigation on non-premixed catalytic combustion of CH4/(O2 + N2) in a planar micro-combustor. Fuel. 2019;255:115823.
    [41] Chen G-B, Chen C-P, Wu C-Y, Chao Y-C. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube. Applied Catalysis A: General. 2007;332:89-97.
    [42] Wang Y, Zhou Z, Yang W, Zhou J, Liu J, Wang Z, et al. Combustion of hydrogen-air in micro combustors with catalytic Pt layer. Energy Conversion and Management. 2010;51:1127-33.
    [43] Li Y-H, Chen G-B, Wu F-H, Cheng T-S, Chao Y-C. Combustion characteristics in a small-scale reactor with catalyst segmentation and cavities. Proceedings of the Combustion Institute. 2013;34:2253-9.
    [44] Lu Q, Gou J, Wang Y, Fan B, Zhang Y, Wang Y, et al. Thermal and chemical analysis on the hetero-/homogeneous combustion characteristics of H2/Air mixture in a micro channel with catalyst segmentation. Fuel. 2022;320:123883.
    [45] Yan Y, Pan W, Zhang L, Tang W, Yang Z, Tang Q, et al. Numerical study on combustion characteristics of hydrogen addition into methane–air mixture. International Journal of Hydrogen Energy. 2013;38:13463-70.
    [46] Liao S. Experimental investigation on the effects of hydrogen addition on thermal characteristics of methane/air premixed flames. Fuel. 2014;115:232-40.
    [47] Kleijnen JPC. Kriging metamodeling in simulation: A review. European Journal of Operational Research. 2009;192:707-16.
    [48] Jones DR, Schonlau M, Welch WJ. Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization. 1998;13:455-92.
    [49] Choi J-Y, Park J, Yi S, Jo Y, Choi S. Design by adaptive infill sampling with multi-objective optimization for exploitation and exploration. Probabilistic Engineering Mechanics. 2022;67:103175.
    [50] Tan JY, Bonatesta F, Ng HK, Gan S. Developments in computational fluid dynamics modelling of gasoline direct injection engine combustion and soot emission with chemical kinetic modelling. Applied Thermal Engineering. 2016;107:936-59.
    [51] Li Y-H, Hong J-R. Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor. Applied Energy. 2018;211:843-53.
    [52] Yang X, He Z, Dong S, Tan H. Enhancement of thermal performance by converging-diverging channel in a micro tube combustor fueled by premixed hydrogen/air. International Journal of Hydrogen Energy. 2019;44:1213-26.
    [53] Ran JY, Wu S, Zhao LJ. Numerical simulation of hydrogen assisted lean methane catalytic oxidation in a micro-channel. Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology. 2011;17:196-202.
    [54] Warnatz J, Maas U, Dibble RW. Combustion : physical and chemical fundamentals, modelling and simulation, experiments, pollutant formation / J. Warnatz, U. Maas, R.W. Dibble. Berlin ;: Springer; 1996.
    [55] Deutschmann O, Maier LI, Riedel U, Stroemman AH, Dibble RW. Hydrogen assisted catalytic combustion of methane on platinum. Catalysis Today. 2000;59:141-50.
    [56] Oliver MA, Webster R. Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information Systems. 1990;4:313-32.
    [57] Kaymaz I. Application of kriging method to structural reliability problems. Structural Safety. 2005;27:133-51.
    [58] Lataniotis C, Marelli S, Sudret B. 2017:9-105.
    [59] Wu Y, Peng Q, Yang M, Shan J, Yang W. Entropy generation analysis of premixed hydrogen–air combustion in a micro combustor with porous medium. Chemical Engineering and Processing - Process Intensification. 2021;168:108566.
    [60] Emadi A, Emami MD. Analysis of entropy generation in a hydrogen-enriched turbulent non-premixed flame. International Journal of Hydrogen Energy. 2013;38:5961-73.
    [61] Briones AM, Mukhopadhyay A, Aggarwal SK. Analysis of entropy generation in hydrogen-enriched methane–air propagating triple flames. International Journal of Hydrogen Energy. 2009;34:1074-83.
    [62] Nishida K, Takagi T, Kinoshita S. Analysis of entropy generation and exergy loss during combustion. Proceedings of the Combustion Institute. 2002;29:869-74.
    [63] Lior N, Sarmiento-Darkin W, Al-Sharqawi HS. The exergy fields in transport processes: Their calculation and use. Energy. 2006;31:553-78.
    [64] Moran MJ. Fundamentals of engineering thermodynamics: Sixth edition. Hoboken, N.J. : Wiley, [2008] ©2008; 2008.
    [65] Jiang D, Yang W, Chua KJ. Entropy generation analysis of H2/air premixed flame in micro-combustors with heat recuperation. Chemical Engineering Science. 2013;98:265-72.
    [66] Arjmandi HR, Amani E. A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber. Energy. 2015;81:706-18.

    無法下載圖示 校內:2027-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE