簡易檢索 / 詳目顯示

研究生: 吳昭輝
Wu, Chao-Hui
論文名稱: 以側向風力篩選粉末之數值研究
Numerical Study on Classification of Powder by Means of Transverse Blowing Wind
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 61
中文關鍵詞: 兩相流
外文關鍵詞: two phase
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著國內IC封裝產業蓬勃發展,電子封裝之錫粉、錫膏用量與日俱增。但目前仍是以進口為主,如果國內可以自行生產,則可免受制於人,自給自足。然而封裝業所用之錫粉相當強調顆粒大小均勻,目前國內噴霧技術已能生產達到電子封裝業的形狀(球型)及大小需求的錫粉,唯粒徑分佈仍過於分散,須經篩分的過程以取其適用範圍之粒徑。一般常用振動式篩分機篩分,但對極微細(<38μm)的金屬而言,顆粒易阻塞篩網,所以並不適合量產時使用。
    本研究則嘗試利用空氣動力原理,藉由側風對大小不同顆粒阻力之差異性來篩分其粒徑。在理論模式方面,連續相採用低雷諾數k-ε紊流模式(low-Reynolds-number k-ε turbulence model)以獲得流場結構;分散相利用拉氏法(Lagrangian approach) 之SSF(stochastic separated flow)模式,來獲得紊流場中的粒子運動軌跡。本文中並探討顆粒對氣相及氣相對顆粒的影響,檢視顆粒在側風下之運動特性及偏移量,比較各項參數對於顆粒運動軌跡的差異。由本研究的結果得知,流場中有顆粒的負載(two way coupling),會改變整個流場的紊態結構。顆粒愈大受側風影響較小,側偏距離短。反之,顆粒小者側偏距離遠,且小顆粒(約<20μm)易懸浮於流場中不易收集。粒徑小於100μm之顆粒在沒有考慮相互碰撞(僅適用於稀薄兩相流)及氣相流速不大時(約17cm/s),篩分效果不錯。

    The growth of the integrated circuit (IC) and semiconductor industry causes a need of great amount of solder paste, which is mainly imported from foreign countries. There exists an urgent need to produce the solder paste domestically; however, the specification of the solder powder requires very narrow size distribution. It leads to a requirement of classification step in the process to be developed. Conventional classification technique does not work effectively for the powder sizes less than 38μm which are the main constituent of the solder paste.
    To predict non-dense two-phase flows nowadays, the most popular approach is the combines Eulerian -Lagrangion models that treat the fluid as a continuum and the particles as discrete entities. In this study, the classification of powder is done by means of transverse blowing. The carrier-phase flow field is described by the Reynolds averaged Navier-Stokes equations with the low-Reynolds-number k-ε turbulence model. The particle trajectories are solved by using stochastic separated flow (SSF) method in Lagrangian framework. For SSF model, the turbulent dispersion effects are simulated by using Monte-Carlo method. A parametric study on geometric of the classifier dimension, particles size and gas phase velocity are performed. The results show that in the two-way coupling regime the momentum transfer from the particles is large enough to alter the turbulence structure. The influences of transverse blowing wind on large particle are less than small particle. The small particle responsed to the fluid motion easily. The classification by means of gas dynamics of particles (less than 100μm) is possible in the present modeling without considering particle collision process.

    目 錄 中文摘要 英文摘要 誌謝 目錄…………………………………………………………………… i 表目錄………………………………………………………………… iii 圖目錄………………………………………………………………iv 符號說明……………………………………………………………viii 第一章 緒論……………………………………………………………1 1.1 前言…………………………………………………………1 1.2 文獻回顧……………………………………………………2 1.3 研究目標……………………………………………………5 第二章 理論模式………………………………………………………6 2.1 分散相運動方程式………………………………………6 2.2 紊流分散效應……………………………………………9 2.3 紊流調制效應……………………………………………10 2.4 顆粒紊流動能……………………………………………11 第三章 數值方法……………………………………………………15 3.1 連續相數值方法………………………………………….15 3.2 分散相數值方法…………………………………………17 3.3 邊界條件…………………………………………………18 第四章 結果與討論……………………………………………………20 4.1 平板流流場………………………………………………20 4.2 突張式流場………………………………………………21 4.3 平板流流場(加顆粒收集槽)……………………………22 4.3.1 單相流………………………………………………22 4.3.2 顆粒特性分析………………………………………22 4.3.3 氣相調制效應………………………………………24 4.3.4 顆粒收集……………………………………………25 第五章 結論及建議……………………………………………………27 參考文獻………………………………………………………………29 附表與圖………………………………………………………………33 表目錄 表3-1. 連續相方程式及AKN低雷諾數紊流模式之模式常數及額外項……33 表3-2. 顆粒對氣相紊流場所造成影響的源項……………………………34 表4-1. 顆粒物理性質與各粒徑之質流率 (顆粒總質流率為0.1g/s)……35 表4-2. 不同質量流率下之顆粒體積比及顆粒密度………………………36 表4-3. 顆粒密度及各粒徑之顆粒質流率…………………………………37 圖目錄 圖2-1. 顆粒與紊流場交互作用圖示(Elghobashi, 1994)………………………38 圖3-1. PSI-Cell法格點系統示意圖…………………………………………39 圖3-2. 高斯分布之機率密度分布函數………………………………………40 圖3-3. PSI-Cell法求解程序(Crowe et al., 1977)………………………………41 圖4-1. 完全發展平板流場示意圖……………………………………………42 圖4-2. AKN模式兩種格點 40x60及50x80在完全發展平板 (Ret=395)所計算之速度………………………………………………………………42 圖4-3. AKN模式兩種格點 40x60及50x80在完全發展平板 (Ret=395)所計算之紊流動能…………………………………………………………43 圖4-4. AKN模式兩種格點 40x60及50x80在完全發展平板 (Ret=395)所計算之紊流動能消散……………………………………………………43 圖4-5. 突張式流場及再接觸長度(reattachment length)示意圖……………44 圖4-6. 突張管流場流線圖,以 Re=600為例………………………………44 圖4-7. 平板流場(加顆粒收集槽)示意圖(H=59.4cm)………………………45 圖4-8. 兩種格點 230x160及310x200在平板流(加顆粒收集槽)所計算之速度(X/H=2.95)與完全發展平板流(未加收集槽)之比較…………………45 圖4-9. 兩種格點 230x160及310x200在平板流(加顆粒收集槽)所計算之紊流動能(X/H=2.95)與完全發展平板流(未加收集槽)之比較…………46 圖4-10. 兩種格點 230x160及310x200在平板流(加顆粒收集槽)所計算之紊流動能消散(X/H=2.95)與完全發展平板流(未加收集槽)之比較……46 圖4-11. 完全發展平板流(加顆粒收集槽)所計算之流線圖(partial view)……47 圖4-12. 6mm×2mm噴嘴所生產錫粉顆粒各粒徑體積比(粒徑大於100 μm者歸納為91-100μm )…………………………………………………47 圖4-13. 6mm×2mm噴嘴所生產錫粉顆粒各粒徑顆粒數比………………48 圖4-14. 氣相速度17cm/s下之顆粒軌跡圖…………………………………48 圖4-15. 不同側向速度下,對顆粒軌跡之影響…………………………49 圖4-16. 同側向速度下,不同顆粒密度,對顆粒軌跡之影響………………49 圖4-17. 同側向速度下,不同平板高,對顆粒軌跡之影響…………………50 圖4-18. 平板流場(加顆粒收集槽)示意圖(H=59.4cm)………………………50 圖4-19. 同側向速度下,不同收集槽寬,對顆粒軌跡之影響………………51 圖4-20. 相同氣相速度下,不同顆粒x方向初速(y方向同為零),對顆粒軌跡之影響……………………………………………………………………51 圖4-21. 相同氣相速度下,不同顆粒y方向初速(x方向同為零),對顆粒軌跡之影響.…………………………………………………………………52 圖4-22. 在平板流場(加顆粒收集槽),顆粒質流率為0.01g/s,所計算之速度比較圖(X/H=2.4)………………………………………………………52 圖4-23. 在平板流場(加顆粒收集槽),顆粒質流率為0.01g/s,所計算之紊流動能比較圖(X/H=2.4)…………………………………………………53 圖4-24. 在平板流場(加顆粒收集槽),顆粒質流率為0.01g/s,所計算之紊流流動能消散比較圖(X/H=2.4)…………………………………………53 圖4-25. 在平板流場(加顆粒收集槽),顆粒質流率為5g/s,所計算之速度比較圖(X/H=2.4)…………………………………………………………54 圖4-26. 在平板流場(加顆粒收集槽),顆粒質流率為5g/s,所計算之紊流動能比較圖(X/H=2.4)……………………………………………………54 圖4-27. 在平板流場(加顆粒收集槽),顆粒質流率為5g/s,所計算之紊流動能消散比較圖(X/H=2.4)………………………………………………55 圖4-28. 第一收集槽所收集顆粒之體積分佈(氣相入口平均流速為10cm/s).....55 圖4-29. 第二收集槽所收集顆粒之體積分佈(氣相入口平均流速為10cm/s).....56 圖4-30. 第一收集槽所收集顆粒之顆粒數分佈(氣相入口平均流速為10cm/s).56 圖4-31. 第二收集槽所收集顆粒之顆粒數分佈(氣相入口平均流速為10cm/s) 57 圖4-32. 第一收集槽所收集顆粒之體積分佈(氣相入口平均流速為17cm/s).....57 圖4-33. 第二收集槽所收集顆粒之體積分佈(氣相入口平均流速為17cm/s).....58 圖4-34. 第一收集槽所收集顆粒之顆粒數分佈(氣相入口平均流速為17cm/s).58 圖4-35. 第二收集槽所收集顆粒之顆粒數分佈(氣相入口平均流速為17cm/s).59 圖4-36. 第一收集槽所收集顆粒之體積分佈(氣相入口平均流速為25cm/s).....59 圖4-37. 第二收集槽所收集顆粒之體積分佈(氣相入口平均流速為25cm/s)…60 圖4-38. 第一收集槽所收集顆粒之顆粒數分佈(氣相入口平均流速為25cm/s).60 圖4-39. 第二收集槽所收集顆粒之顆粒數分佈(氣相入口平均流速為25cm/s).61

    Abe, K., Kondoh T. and Nagano Y., 1994, “A New Turbulence Model for predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flow - 1,Flow Field Calculation,” Int. J. Heat Mass Transfer, vol.137, pp.139-151.
    Asano, K., Funayama, Y., Yatsuzuka, K., and Higashiyama, Y., 1995, “Spherical Particle Sorting by Using Droplet Deflection Technology,” J. Electrostatics, Vol. 35, pp. 3-12.
    Armaly, B. F., Durst, F., Pereira, J. C. F. and Schonung, B., 1983, “Experimental and Theoretical investigation of Backward-Facing Step Flow,” J. Fluid Mech., Vol. 127.
    Bird, G. A., 1976, “Molecular Gas Dynamics,” Clarendon, Oxford.
    Chang, K. C., Wang, M. R., Wu, W. J., and Liu, Y. C., 1993, “Theoretical and Experimental Study on Two-phase Structure of Planar Mixing Layer,” AIAA J., Vol. 31, No. 1, pp. 68-74.
    Chang, K. C., and Wu, W. J., 1994, “Sensitivity Study on Monte Carlo Solution Procedure of Two-phase Turbulent Flow,” Numerical Heat Transfer, Part B, Vol. 25, No. 2, pp. 223-244.
    Chang, K. C., Wu, W. J., and Yang, J. C., 1997, “Lagrangian Transport Equation of Fluctuating Kinetic Energy in the Dispersed Phase,” Proceedings of 7th Int. Conf. on Liquid Atomization and Spray Systems, Seoul Korea, pp. 860-867.
    Chen, C. P., Shang, H. M., and Jiang, Y., 1991, “A Novel Gas-Droplet Numerical Method for Spray Combustion,” AIAA paper 91-0286.
    Chen, C. P., and Wood P. E., 1984, “Turbulence Closure Modeling of Two-Phase Flows,” Chem. Eng. Commun., Vol. 29, pp. 291-310.
    Chen, X. Q., and Pereira, J. C. F., 1996, “Stochastic-probabilistic Efficiency Enhanced Dispersion Modeling of Turbulent Polydispersed Sprays,” J. Propulsion and Power, Vol.12, No 4, pp.760-769.
    Clift, R., Grace J. R., and Weber, M. E., 1978, Bubbles, Drops and Particles, Academic Press, New York.
    Crowe, C. T., Sharma, M. P. and Stock, D. E., 1977, “The Particle-Source-In-Cell Model for Gas-Droplet Flows,” Trans. ASME J. Fluid Engng., Vol. 99, pp. 325-332.
    Crowe, C. T., Troutt, T. R. and Chung J. N., 1996, “Numerical Models for Two-Phase Turbulent Flows,” Annual Review of Fluid Mechanics, Vol. 28, pp. 11-43.
    Cundall, P. A., Strack, O. D., 1979, “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47.
    Elghobashi, S. E., 1994, “On Predicting Particle-Laden Turbulent Flows,” Applied Scientific Research, Vol. 52, pp. 309-329.
    Gosman, A. D., and Ioannides, E., June 1981, “Aspects of Computer Simulation of Liquid-Fuelled Combustors,” AIAA Paper 81-0323.
    Hetsroni, G., 1989, “Particle-Turbulence Interaction,” Int. J. Multiphase Flow, Vol. 15, pp. 735-746.
    Hsu, C. C. and Chang, K. C., 2001, “Prediction of Lagrangian Time Scales for Carrier Phase in Single-Phase and Droplet-Loading Two-Phase Mixing Layers,” Master Thesis, Institute of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan, R.O.C. .
    Mostafa, A. A., and Mongia, H. C., 1987, “On the Modeling of Turbulent Evaporating Sprays: Eulerian Versus Lagrangian Approach,” Int. J. Heat Mass Transfer, Vol. 30, pp. 2583-2593.
    Nagano, Y. and Tagawa, M., 1990, "An improved Model for Boundary Layer Flows," ASME J. Fluid. Engng., vol.112, pp.33-39.
    Owen, P. R., 1964, "Saltation of Uniform Grains in Air," J. Fluid Mech., Vol. 20, pp. 225-242.
    Pan, Y., 2000,”Numerical Analysis on Particle-Laden Rotating Turbulent Flow,” Ph. D. Thesis, Osaka University, Japan.
    Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw Hill, New York.
    Pourahmadi, F., and Humphrey, J. A. C., 1983, “Modeling Solid-Fluid Turbulent Flows with Application to Predicting Erosive Wear,” Physico Chemical Hydrodynamical, Vol. 4, pp. 191-219.
    Shirolkar, J. S., Coimbra, C. F. M., and McQuay, M. Q., 1996, “Fundamental Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows,” Progress Energy Combustion Science, Vol. 22, pp. 363-399.
    Shuen, J.-S., Solomon, A. S. P., Zhang, Q.-F., and Faeth, G. M., 1983, “A Theoretical and Experimental Study of Turbulent Particle-Laden Jet,” NASA CR-168293.
    Shyu, M. J. and Chang, K. C., 1998,” Re-examination of Damping Function and Energy Equation in Low-Reynolds-Number Turbulence Models,” Master Thesis, institute of Aeronautics and Astronautics National Cheng Kung University, Taiwan R.O.C.
    Sirignano, W. A., September 1993, “Fluid Dynamics of Sprays-1992 Freeman Scholar Lecture,” J. Fluids Engineering, Vol. 118, pp. 345-378.
    Soo, S. L., 1967, Fluid Dynamics of Multiphase System, Chap. 2, Blaisdell, Waltham, Massachusetts.
    Tsuji, Y., Tanaka, T., and Yonemura, S., 1998, “ Cluster Patterns in Circulating Fluidized Beds Predicted by Numerical Simulation (Discrete Particle Model versus Two-Fluid Model),” Powder Technology, Vol. 95, pp. 254-264.
    Yang, J. C. and Chang, K. C., 2000, Re-examination of the stochastic Eulerian-Lagrangian method for two-phase turbulent flow, Ph. D. Thesis, Institute of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan/R.O.C.
    Wang, C. C. and Chang, K. C., 1995 “Numerical Simulation on the Wall Transport process via the Near-Wall Low-Reynolds-number Turbulence Model and Body Fitted Coordinates System,” Master Thesis, institute of Aeronautics and Astronautics National Cheng Kung University, Taiwan R.O.C.
    Wu, W. J., 1992, “A Parametric Study of Monte-Carlo Method Capable of Predicting Two-Phase Turbulent Flows,” Ph. D. Thesis, Institute of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan, R.O.C..

    下載圖示 校內:立即公開
    校外:2002-07-05公開
    QR CODE