簡易檢索 / 詳目顯示

研究生: 劉建凱
Liou, Jian-Kai
論文名稱: 具有特定結構之高品質氮化鎵系發光二極體之研究
Study of Improved-Performance GaN-Based Light-Emitting Diodes (LEDs) with Specific Approaches
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 148
中文關鍵詞: 氮化鎵發光二極體電流散佈反射鏡奈米球陽極氧化鋁圖案化藍寶石基板
外文關鍵詞: GaN, light-emitting diodes, current-spreading effect, reflectors, nanospheres, anodized aluminum oxide, patterned sapphire substrate
相關次數: 點閱:153下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究論文中,為了改善氮化鎵系發光二極體的電流散佈特性與光取出效率(light-extraction efficiency),吾人研製一系列具有特定結構之高品質氮化鎵系發光二極體。分別提出了新穎的奈米材料與元件製程技術,其中包含鋁金屬反射層與二氧化矽絕緣層複合結構、奈米級粗糙化背鍍反射鏡以及奈米級圖案化藍寶石基板,有效提升氮化鎵系發光二極體的光電轉換效率,優化氮化鎵系發光二極體之性能與可靠度。本文對氮化鎵系發光二極體元件之光電特性與磊晶品質,以及單層二氧化矽奈米球結構與陽極氧化鋁薄膜兩奈米結構之製程與成長機制皆有深入且詳細的研究與探討。
    首先,吾人研製具有鋁金屬反射層與二氧化矽絕緣層複合結構沉積於自然粗糙化p型氮化鎵層表面之氮化鎵系發光二極體中,以同時改善電流擁擠效應(current-crowding effect)與電極下方之光吸收。二氧化矽絕緣層可有效改善電流擁擠效應,增加電流散佈效率;鋁金屬反射層沉積於p型電極下方,可大幅減少電極之光吸收;自然粗糙化p型氮化鎵層表面則可有效降低內部全反射與增加光散射之機會。文中亦證實鋁金屬反射層之反射能力並不會因為沉積於自然粗糙化p型氮化鎵層表面而受限。雖然相較於傳統氮化鎵系發光二極體,此研發元件之功率消耗會略為增加,但光輸出功率(light output power)與光通量(luminous flux)分別可提升56%以及95%,可有效改善光電轉換效率。
    其次,藉由塗佈一具有規則排列之單層二氧化矽奈米球結構於發光二極體藍寶石基板背面後,再利用電子束蒸鍍依序鍍上背鍍複合式反射鏡,以形成具有三維光子晶體背鍍式反射鏡結構,藉此類光子晶體反射鏡結構,減少元件背部封裝金屬之光吸收並增加光散射之機會,有效增加光取出效率。相較於傳統高功率氮化鎵系發光二極體,在不影響元件之電性特性下,此研發元件可提升光輸出功率與光通量高達136%以及165%,有效改善光電轉換效率。此外,吾人亦研究藉由塗佈單層二氧化矽奈米球結構於藍寶石基板背面當作蝕刻硬遮罩,再利用感應耦合電漿離子蝕刻(inductively coupled plasma, ICP)來轉印出三維結構,再依序鍍上背鍍複合式反射鏡,以形成具有三維結構之背鍍複合式反射鏡。此部分研究採用乾蝕刻轉印三維結構,而非選擇前者嵌入式單層二氧化矽奈米球結構,相較於傳統高功率氮化鎵系發光二極體,在不影響元件之電性特性下,仍可提升高功率氮化鎵系發光二極體之光輸出功率與光通量達118%以及142%,有效改善背鍍反射鏡之附著力,大幅增加元件製程之良率。
    最後,探討藉由氧化還原方式成長出具有規律性蜂巢狀且高長寬比的陽極氧化鋁(anodic aluminum oxide, AAO)式奈米孔洞薄膜於藍寶石基板上,以其當作蝕刻硬遮罩,再利用感應耦合電漿離子蝕刻來轉印出奈米級圖案化藍寶石基板,以改善磊晶品質,有效降低氮化鎵系發光二極體元件之線差排(threading dislocation)缺陷密度,降低逆向漏電流改善元件電性特性,並減少主動區中非輻射復合(non-radiative recombination)的產生。此陽極氧化鋁式奈米孔洞圖案化藍寶石基板除了可提升內部量子效率,奈米孔洞圖案化藍寶石基板與氮化鎵磊晶層界面形成之類光子晶體空氣孔洞陣列,可反射由主動區發散之背向光,減少元件背部封裝金屬之光吸收,並增加光散射之機會,提升光輸出功率與外部量子效率達54%以及44%。本研究論文中所研製的高品質氮化鎵系發光二極體,皆可有效提升光電轉換效率,在商業化上具有相當之潛力。

    In this dissertation, for purposes of enhancing the current spreading performance and light extraction efficiency (LEE), a series of high-performance GaN-based light-emitting diodes (LEDs) with specific approaches are fabricated and studied. Novel nanomaterials and device fabrication processes, including an aluminum reflecting layer and an SiO2 insulating layer hybrid structure deposited on a naturally textured p-GaN surface, nanoscale textured backside reflectors, and nanoscale patterned sapphire substrates, are proposed to improve wall-plug efficiency (WPE) of GaN-based LEDs. Thus, enhanced performance and reliability of GaN-based LEDs could be obtained. Optical and electrical properties and the epitaxial quality of GaN-based LEDs are studied and discussed. In addition, the fabrication processes and growth mechanism of a self-assembled SiO2 nanosphere monolayer and an anodized aluminum oxide (AAO) thin film are addressed and discussed in detail.
    First, a GaN-based LED with aluminum reflecting and SiO2 insulating layers (RIL) deposited on a naturally textured p-GaN surface is fabricated and studied. The use of an RIL structure could enhance the current spreading performance and reduce the photon absorption by the p-pad metal. A textured surface is used to limit the total internal reflection and increase photon scattering. Experimentally, the reflectivities of a Cr/Pt/Au metal pad metal with an Al reflecting layer are always higher than those with only a metal pad, regardless of wavelength as well as whether a textured p-GaN surface is employed or not. Even though a GaN-based LED with naturally textured p-GaN surface exhibits remarkably higher light output power than dose the one with a planar p-GaN surface, the performance could still be improved by the use of an RIL structure. Effects of the use of an Al RL and/or an SiO2 insulating layer on the performance of GaN-based LEDs are systematically studied and compared in detail. As compared with a conventional GaN-based LED with a planar p-GaN surface at 20 mA, the studied device exhibits a 56% and 95% enhancement in light output power and luminous flux. Although power consumption is slightly increased because of the insertion of an RIL structure, this drawback could be surpassed by the mentioned optical improvements. Therefore, although a naturally-textured surface is utilized to enhance LEE, the performance of GaN-based LEDs with a naturally-textured p-GaN surface could be further enhanced by employing the RIL structure.
    Second, enhanced LEE of high-power GaN-based LEDs is achieved by inserting a self-assembled SiO2 nanosphere monolayer between the substrate and a hybrid backside reflector (a distributed Bragg reflector and a metal mirror). A self-assembled 100 ± 5 nm SiO2 nanosphere monolayer arrangement is drop-coated on the backside of a sapphire substrate. A hybrid backside reflector is directly deposited on the SiO2 nanosphere monolayer by an electron beam evaporator. Due to the presence of concave surfaces and photonic crystal (PhC)-like air voids, downward photons emitted from the active region toward the 3-D textured hybrid backside reflector, could be reflected, scattered, and redirected in arbitrary directions for light extraction. As compared with a conventional high-power GaN-based LED without a backside reflector, at 350 mA, the studied device exhibits a 136% and 165% enhancement in light output power and luminous flux without the degradation of electrical properties. Therefore, performance could be significantly improved.
    A high-power GaN-based LED with a nano-hemispherical hybrid backside reflector is also fabricated and studied. A self-assembled 100 ± 5 nm SiO2 nanosphere monolayer arrangement is drop-coated on the backside of a sapphire substrate. Then, the SiO2 nanosphere monolayer is utilized as a hard mask to transfer nano-hemispherical patterns onto the backside of the sapphire substrate by an inductively coupled plasma (ICP) etching process. Due to the presence of ICP-transferred nano-hemispherical patterns on the backside of the sapphire substrate, nano-hemispherical patterns could be transferred to the deposited hybrid backside reflector. Hence, reflected photons could be redirected and scattered into arbitrary directions for light extraction and create more opportunities to find escape cones. As compared with a conventional LED without a backside reflector, at 350 mA, the studied device exhibits a 118% and 142% enhancement in light output power and luminous flux without the degradation of electrical properties. Notably, the adhesion between an ICP-transferred sapphire substrate and hybrid backside reflector is better than that of directly inserting an SiO2 nanosphere monolayer in the device. Thus, the process yield could be enhanced for applying in solid-state lighting.
    Finally, a GaN-based LED grown on an anodized aluminum oxide-nanoporous pattern sapphire substrate (AAO-NPSS) is fabricated and studied. Nanoporous patterns are transferred on a sapphire substrate by using a well-ordered AAO thin film as a mask for the ICP etching process. This well-ordered AAO thin film with a high aspect ratio is grown on a sapphire substrate using an oxalic acid-based electrochemical system and a three-step anodization. The strain state generated during epitaxial growth could be effectively alleviated by the use of AAO-NPSS. Thus, an enhanced crystalline quality could be obtained. The treading dislocation (TD) density could be reduced. The decrease in non-radiative recombination caused by the reduction of the TD density certainly leads to an increase in internal quantum efficiency (IQE). In addition, due to the presence of PhC-like air voids, part of the reflected photons upward the top side could be scattered by these air voids. Therefore, more photons could be extracted outside. Experimentally, at 20 mA, as compared with a conventional LED grown on a planar sapphire substrate, the studied LED exhibits a 54% and 44% enhancement in light output power and external quantum efficiency as well as a reduced leakage current.
    All of these specific approaches, which are fabricated and studied in this dissertation, could significantly improve performance of GaN-based LEDs. To compete with traditional light sources in applications of solid-state lighting, high-performance GaN-based LEDs could be expected to have some success.

    Abstract Table Lists Figure Captions Chapter 1. Introduction and Background 1-1. Review of Gallium-Nitride (GaN)-Based Light-Emitting Diodes (LEDs).......................................... 1 1-2. Review of Nanolithography......................... 6 1-3. Thesis Organizations.............................. 8 Chapter 2. Improved Performance of GaN-Based LEDs with Aluminum Reflecting and SiO2 Insulating Layers (RILs) Deposited on a Naturally Textured p-GaN Surface 2-1. Introduction..................................... 10 2-2. Device Structure and Fabrication................. 12 2-3. Experimental Results and Discussion.............. 13 2-3-1. Reflectivity................................... 13 2-3-2. Electrical Properties.......................... 14 2-3-3. Optical Properties............................. 16 2-3-4. Junction Temperature and Wall-Plug Efficiency.. 18 2-3-5. Light Emission Mapping and Simulation.......... 19 2-3-6. Far-filed pattern.............................. 19 2-4. Summary.......................................... 20 Chapter 3. Improved Performance of High-Power GaN-Based LEDs with a 3-D Textured Hybrid Backside Reflector Formed by a Self-Assembled SiO2 Nanosphere Monolayer 3-1 A High-Power GaN-Based LED with a 3-D Textured Backside Reflector Formed by Inserting a Self-Assembled SiO2 Nanosphere Monolayer............................. 22 3-1-1. Introduction................................... 22 3-1-2. Device Structure and Fabrication............... 23 3-1-3. Experimental Results and Discussion............ 25 3-1-3-1. Surface Morphology........................... 25 3-1-3-2. Reflectivity................................. 26 3-1-3-3. Electrical Properties........................ 27 3-1-3-4. Optical Properties........................... 27 3-1-3-5. Light Emission Mapping....................... 29 3-1-3-6. Far-filed pattern............................ 29 3-1-4. Summary........................................ 30 3-2 A High-Power GaN-Based Light-Emitting Diode with a ICP-Transferred Nano-Hemispherical Backside Reflector. 31 3-2-1. Introduction................................... 31 3-2-2. Device Structure and Fabrication............... 32 3-2-3. Experimental Results and Discussion............ 34 3-2-3-1. Surface Morphology........................... 34 3-2-3-2. Electrical Properties........................ 35 3-2-3-3. Optical Properties........................... 35 3-2-3-4. Light Emission Mapping....................... 35 3-2-4. Summary........................................ 37 Chapter 4. Improved Performance of a GaN-Based LED Grown on an Anodized Aluminum Oxide-Nanoporous Pattern Sapphire Substrate (AAO-NPSS) 4-1. Introduction..................................... 39 4-2. Device Structure and Fabrication................. 41 4-3. Experimental Results and Discussion.............. 43 4-3-1. AAO Growth Mechanism........................... 44 4-3-2. Surface Morphology............................. 46 4-3-3. Crystalline Quality............................ 46 4-3-4. Electrical Properties.......................... 48 4-3-5. Optical Properties............................. 48 4-4. Summary.......................................... 50 Chapter 5. Conclusion and Prospect 5-1. Conclusion....................................... 52 5-2. Prospect......................................... 55 References............................................ 57 Figures and Tables.................................... 74 Publication List..................................... 140

    1. H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
    2. H. P. Maruska, D. A. Stevenson, and J. I. Pankove, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp. 303-305, 1973.
    3. M. Ilegems and R. Dingle, “Luminescence of Be- and Mg-doped GaN,” J. Appl. Phys., vol. 44, pp. 4234-4235, 1973.
    4. H. P. Maruska and D. A. Stevenson, “Mechanism of light production in metal-insulator-semiconductor diodes; GaN:Mg violet light-emitting diodes,” Solid-State Electron., vol. 17, pp. 1171-1179, 1974.
    5. S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett., vol. 42, pp. 427-429, 1983.
    6. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
    7. S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991.
    8. S. Nakamura, T. Mukai, and M. Senoh, “In situ monitoring and hall measurements of GaN with GaN buffer layers,” J. Appl. Phys., vol. 71, pp. 5543-5549, 1992.
    9. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
    10. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1992.
    11. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266, 1992.
    12. J. Neugenbauer and C. G. Van de Walle, “Hydrogen in GaN: Novel aspects of a common impurity,” Phys. Rev. Lett., vol. 75, pp. 4452-4455, 1995.
    13. J. Neugenbauer and C. G. Van de Walle, “Role of hydrogen in doping of GaN,” Appl. Phys. Lett., vol. 68, pp. 1829-1831, 1996.
    14. J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Luminescence, vol. 4, pp. 63–66, 1971.
    15. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 30, pp. L1998-L2001, 1991.
    16. S. Nakamura, M. Senoh, and T. Mukai, “p-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 32, pp. L8-L11, 1993.
    17. S. Nakamura, T. Mukai, and M. Senoh, “Candera-class high-brightness InGaN/AlgaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
    18. Nikkei Sangyo Shinbun, “p-n junction DH blue LEDs with a brightness of more than 1000 mcd were developed by Nichia Chemical Industries Ltd.,” Japanese newspaper press release, Nov. 30, 1993.
    19. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, pp. L797-L799, 1995.
    20. S. Nakamura and G. Fasol, “The Blue Laser Diode,” Germany: Springer-Verlag, Berlin, pp. 216-219, 1997.
    21. S. Nakamura and M. R. Krames, “History of Gallium–Nitride-Based Light-Emitting Diodes for Illumination,” Proc. IEEE, vol. 101, pp. 2211-2220, 2013.
    22. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure,” IEEE J. Quantum Electron., vol. 46, pp. 492-498, 2010.
    23. A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures,” Appl. Phys. Lett, Vol. 70, pp. 2790-2792, 1997.
    24. J. K. Liou, C. C. Chen, P. C. Chou, S. Y. Cheng, J. H. Tsai, R. C. Liu, and W. C. Liu, “Effects of the use of an aluminum reflecting and an SiO2 insulating layers (RIL) on the performance of a GaN-based light-emitting diode with the naturally textured p-GaN surface,” IEEE Trans. Electron Devices, vol. 60 , pp. 2282-2289, 2013.
    25. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 310-320, 2002.
    26. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
    27. V. Haerle, B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, A. Plo¨ssl, and D. Eiser, “High brightness LEDs for general lighting applications using the new ThinGaNTM-technology,” Phys. Stat. Sol. (A), vol. 201, pp. 2736-2739, 2004.
    28. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol., vol. 3, pp. 160-175, 2007.
    29. A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Appl. Phys. Lett., vol. 71, pp. 2259-2261, 1997.
    30. P. Bhattacharya, “Semiconductor optoelectronic devices,” Prentice Hall, New Jersey, 1994.
    31. S. M. Sze, “Physics of semiconductor devices, 2nd Ed.,” Wiley, New York, 1981.
    32. D. Hull, “Introduction to dislocations, 2nd Ed.,” Pergamon Press, Oxford, 1975.
    33. X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects, and correlation with localized excitonic centers in InGaN/ GaN multiple quantum wells,” Appl. Phys. Lett., vol. 72, pp. 692-694, 1998.
    34. J. W. Matthews, “Epitaxial growth,” Academic, New York, 1975.
    35. M. Kneissl, T. L. Paoli, P. Kiesel, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Two-section InGaN multiple-quantum-well laser diode with integrated electroabsorption modulator,” Appl. Phys. Lett., vol. 80, pp. 3283-3285, 2002.
    36. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D-Appl. Phys., vol. 43, pp. 354002, 2010.
    37. M. Fukuda, “Optical semiconductor devices,” Wiley, New York, 1999.
    38. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174-2176, 1993.
    39. Y. J. Liu, C. H. Yen, K. H. Yu, T. P. Chen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a low-damage GaN-based light-emitting diode using a KOH-treated wet-etching approach,” Jpn. J. Appl. Phys., vol. 48, pp. 082104, 2009.
    40. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction efficiency from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, pp. 203508, 2005.
    41. C. E. Lee, H. C. Kuo, Y. C. Lee, M. R. Tsai, T. C. Lu, S. C. Wang, and C. T. Kuo, “Luminance enhancement of flip-chip light-emitting diodes by geometric sapphire shaping structure,” IEEE Photon. Technol. Lett., vol. 20, pp. 184-186, 2008.
    42. J. K. Sheu, I. H. Hwan, W. C. Lai, S. C. Shei, and M. L. Lee, “ Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett., vol. 93, pp.103507, 2008.
    43. G. Venugopal and S. J. Kim, “Advances in micro/nano electromechanical systems and fabrication technologies: nanolithography,” InTech, Croatia, 2013.
    44. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, vol. 272, pp. 85-87, 1996.
    45. R. Garcia, A. W. Knoll, and E. Riedo, “Advanced scanning probe lithography,” Nat. Nanotechnol., vol. 9, pp. 577-587, 2014.
    46. L. G. Rosa and J. Liang, “Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography,” J. Phys.-Condes. Matter, vol. 21, pp. 483001, 2009.
    47. J. E. Bjorkholm, “EUV lithography: the successor to optical lithography?,” Intel Technology Journal, Vol. 2, pp. 1-8, 1998.
    48. Y. Vladimirsky, A. Bourdillon, O. Vladimirsky, W. Jiang, and Q. Leonard, “Demagnification in proximity x-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction,” J. Phys. D-Appl. Phys., vol. 32, pp. L114-L118, 1999.
    49. R. H. Horng, A. L. Hu, R. C. Lin, K. C. Peng, and Y. C. Chiang, “Thermal behavior of sapphire-based InGaN light-emitting diodes with cap-shaped copper-diamond substrates,” Electrochem. Solid State Lett., vol. 14, pp. H215-H217, 2011.
    50. R. H. Horng, H. Y. Hsiao, C. C. Chiang, D. S. Wuu, Y. L Tsai, and H. I. Lin, “Novel device design for high-power InGaN/sapphire LEDs using copper heat spreader with reflector,” IEEE J. Sel. Top. Quantum Electron., vol. 15, pp.1281-1286, 2009.
    51. W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett., vol. 72, pp. 599-602, 1998.
    52. V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater., vol. 15, pp. 75-78. 2003.
    53. A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanijan, “Template assisted assembly of cobalt nanobowl arrays,” J. Mater. Chem., vol. 15, pp. 4424-4428, 2005.
    54. Y. Wang, S. B. Han, A. L. Briseno, R. J. G. Sanedrin, and F. M. Zhou, “A modified nanosphere lithography for the fabrication of aminosilane/polystyrene nanoring arrays and the subsequent attachment of gold or DNA-capped gold nanoparticles,” J. Mater. Chem., vol. 15, pp. 3488-3494. 2004.
    55. J. K. Liou, P. C. Chou, C. C. Chen, Y. C. Chang, W. C. Hsu, S. Y. Cheng, J. H. Tsai, and W. C. Liu, “Implementation of high-power GaN-based LEDs with a textured 3-D backside reflector formed by inserting a self-assembled SiO2 nanosphere monolayer,” IEEE Trans. Electron Devices, vol. 61 , pp. 831-837, 2014.
    56. B. G. Prevo, E. W. Hon, and O. D. Velev, “Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells,” J. Mater. Chem., vol. 17, pp. 791-799. 2007.
    57. P. Jiang and M. J. McFarland, “Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals,” J. Am. Chem. Soc., vol. 127, pp. 3710-3711, 2005.
    58. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B, vol. 103, pp. 3854-3863, 1999.
    59. H. B. Zeng, X. J. Xu, Y. Bando, U. K. Gautam, T. Y. Zhai, X. S. Fang, B. D. Liu, and D. Golberg, “Template deformation-tailored ZnO Nanorod/nanowire arrays: full growth control and optimization of field-emission,” Adv. Funct. Mater., vol. 19, pp. 3165-3172, 2009.
    60. Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: Old materials with new applications,” Adv. Mater., vol. 12, pp. 693-713, 2000.
    61. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mat., vol. 11, pp. 2132- 2140, 1999.
    62. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir, vol. 24, pp. 12150-12157, 2008.
    63. Z. Z. Gu, A. Fujishima, and O. Sato, “Fabrication of high-quality opal films with controllable thickness,” Chem. Mat., vol. 14, pp. 760-765, 2002.
    64. D. Y. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating,” Adv. Mater., vol. 16, pp. 244-247, 2004.
    65. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina,” Science, vol. 268, pp. 1466-1468, 1995.
    66. J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem Rev., vol. 69, pp.365-405, 1969.
    67. M. M. Lohrengel, “Thin anodic oxide layers on aluminum and other valve metals: high-field regime,” Mater. Sci. Eng., vol. R11, pp. 243-294, 1993.
    68. D. AlMawlawi, N. Coombs, and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size,” J. Appl. Phys., vol. 70, pp. 4421-4425, 1991.
    69. C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater., vol. 8, pp. 1739-1746, 1996.
    70. N. Tsuya, T. Tokushima, Y. Wakui, Y. Saito, H. Nakamura, S. Hayano, A. Furugori, and M. Tanaka, “Alumite disc using anodic oxidation,” IEEE Trans. Magn., vol. 22, pp. 1140-1145, 1986.
    71. N. Tsuya, T. Tokushima, M. Shiraki, Y. Umehara, Y. Saito, H. Nakahara, and Y. Harada, “Perpendicular magnetic flexible disc by anodic oxidation,” IEEE Trans. Magn., vol. 24, pp. 1790-1792, 1988.
    72. A. Lyberators, R. W. Chantrell, E. R. Sterringa, and J. C. Lodder, “Magnetic viscosity in perpendicular media,” J. Appl. Phys., vol. 70, pp. 4431-4438, 1991.
    73. E. O. Samwel, P. R. Bissell, and J. C. Lodder, “Remanent magnetic measurements on perpendicular recording materials with compensation for demagnetizing fields,” J. Appl. Phys., vol. 73, pp. 1353-1359, 1993.
    74. F. Li, X. Bao, R. M. Metzger, and M. Carbucicchio, “Lanthanide and boron oxide-coated α-Fe particles,” J. Appl. Phys., vol. 79, pp. 4869-4872, 1996.
    75. F. Li and R. M. Metzger, “Activation volume of α-Fe particles in alumite films” J. Appl. Phys., vol. 81, pp.3806-3808, 1997.
    76. L. Zhang, H. S. Cho, F. Li, R. M. Metzger, W. D. Doyle, “Cellular growth of highly ordered porous anodic films on aluminum,” J. Mater. Sci. Lett., vol. 17, pp. 291-294, 1998.
    77. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, vol. 268, pp. 1466-1468, 1995.
    78. O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., vol. 72, pp. 1173-1175, 1998.
    79. F. García-Santamaría, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Mesegure, and C. Lopez, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater., vol. 14, pp. 1144-1147, 2002.
    80. W. Kandulski, A. Kosiorek, M. Olek, and M. Giersig, “A new method for production of nanoscale structures for possible applications in security,” Int. J. Nanotechnol., vol. 4, pp. 226-232, 2007.
    81. A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. D-Appl. Phys, vol.40, pp. 2341-2347. 2007.
    82. Z. P. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Adv. Mater., vol. 19. pp. 744-748, 2007.
    83. K. H. Park, S. Lee, K. H. Koh, R. Lacerda, K. B. K. Teo, and W. I. Milne, “Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers,” J. Appl. Phys., vol. 97, pp. 024311, 2005.
    84. J. Y. Kim, M. K. Kwon, I. K. Park, C. Y. Cho, S. J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced light extraction efficiency in flip-chip GaN light-emitting diodes with diffuse Ag reflector on nanotextured indium-tin oxide,” Appl. Phys. Lett., vol. 93, pp. 021121, 2008.
    85. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, T. Y. Tsai, and W. C. Liu, “Implementation of an indium-tin-oxide (ITO) direct-ohmic contact structure on a GaN-based light emitting diode,” Opt. Express, vol. 19, pp. 14662-14670, 2011.
    86. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, “Performance investigation of GaN-based light-emitting diodes with tiny misorientation of sapphire substrates,” Opt. Express, vol. 18, pp. 2729-2742, 2010.
    87. C. K. Li and Y. R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron Devices, vol. 59, pp. 400-407, 2012.
    88. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater., vol. 22, pp. 3454-3459, 2012.
    89. E. Matioli, B. Fleury, E. Rangel, T. Melo, E. Hu, J. Speck, and C. Weisbuch, “High extraction efficiency GaN-based photonic-crystal light-emitting diodes: comparison of extraction lengths between surface and embedded photonic crystals,” Appl. Phys. Express, vol. 3, pp. 032103, 2010.
    90. J. Jewell, D. Simeonov, S. C. Huang, Y. L. Hu, S. Nakamura, J. Speck, and C. Weisbuch, “Double embedded photonic crystals for extraction of guided light in light-emitting diodes,” Appl. Phys. Lett., vol. 100, pp. 171105, 2012.
    91. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photonics Technol. Lett., vol. 3, pp. 489-499, 2011.
    92. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express, vol. 17, pp. 13747-13757, 2009.
    93. R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett, Vol. 92, pp. 261105, 2008.
    94. C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photonics Technol. Lett., vol. 21, pp. 996-998, 2009.
    95. J. K. Liou, Y. J. Liu, C. C. Chen, P. C. Chou, W. C. Hsu, and W. C. Liu, “On a GaN-based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface,” IEEE Electron Device Lett., vol. 33, pp. 227-229, 2012.
    96. Y. L. Chou, R. M. Lin, M. H. Tung, C. L. Tsai, J. C. Li, I. C. Kuo, and M. C. Wu, “Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector,” IEEE Photon. Technol. Lett., vol. 23, pp. 393-395, 2011.
    97. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
    98. F. I. Lai, Y. L. Hsieh, and W. T. Lin, “Enhancement in the extraction efficiency and resisting electrostatic discharge ability of GaN-based light emitting diode by naturally grown textured surface,” Diam. Relat. Mat., vol. 20, pp. 770-773, 2011.
    99. C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of light output power of GaN-based light-emitting diodes by a reflective current blocking layer,” IEEE Photon. Technol. Lett., vol. 23, pp. 986-988, 2011.
    100. C. F. Tsai, Y. K. Su, and C. L. Lin, “Further improvement in the light output power of InGaN-based light emitting diodes by reflective current blocking design,” Semicond. Sci. Technol., vol. 26, pp. 095013, 2011.
    101. Y. J. Liu, D. F. Guo, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu and W. C. Liu, “Investigation of electrostatic discharge performance of GaN-based light-emitting diodes with naturally-textured p-GaN contact layers grown on miscut sapphire substrates,” IEEE Trans. Electron Devices, vol. 57, pp. 2155-2162, 2010.
    102. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron., vol. 47, pp. 755-761, 2011.
    103. H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O Song, Y. H. Lee, and T. Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid State Lett., vol. 13, pp. H237-H239, 2010.
    104. T. Y. Tsai, Y. J. Liu, C. H. Yen, and W. C. Liu, “On an AlGaInP multiple-quantum-well light emitting diode with a thin carbon-doped GaP contact layer structure,” J. Electrochem. Soc., vol. 157, pp. H459-H462, 2010.
    105. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol., vol. 27, pp. 024001, 2012.
    106. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express, vol. 19, pp. A991-A1007, 2011.
    107. N. C. Chen, C. M. Lin, Y. K. Yang, C. Shen, T. W. Wang, and M. C. Wu, “Measurement of junction temperature in a nitride light-emitting diode,” Jpn. J. Appl. Phys., vol. 47, pp. 8779-8782, 2008.
    108. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, pp. 2163-2165, 2004.
    109. Y. J. Park, H. Y. Kim, J. H. Ryu, H. K. Kim, J. H. Kang, N. Han, M. Han, H. Jeong, M. S. Jeong, and C. H. Hong, “Effect of embedded silica nanospheres on improving the performance of InGaN/GaN light-emitting diodes,” Opt. Express, vol. 19, pp. 2029-2036, 2011.
    110. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 310-320, 2002.
    111. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure,” IEEE J. Quantum Electron., vol. 46, pp. 492-498, 2010.
    112. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Disp. Technol., vol. 3, pp. 133-148, 2007.
    113. Y. S. Lin and J. A. Yeh, “GaN-based light-emitting diodes grown on nanoscale pattern sapphire substrates with void-embedded cortex-like nanostructures,” Appl. Phys. Express, vol. 4, pp. 092103, 2011.
    114. S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-based LEDs with a hybrid Al mirror+TiO2/SiO2 DBR backside reflector,” J. Lightwave Technol., vol. 26, pp. 3131-3136, 2004.
    115. J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J. L. Lee, “Design rule of nanostructures in light-emitting diodes for complete elimination of total internal reflection,” Adv. Mater., vol. 24, pp. 2259-2262, 2004.
    116. R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett., Vol. 92, pp. 261105, 2008.
    117. H. Chen, H. Guo, P. Zhang, X. Zhang, H. Liu, S. Wang, and Y. Cui, “Enhanced performance of GaN-based light-emitting diodes by using Al mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector with patterned sapphire substrate,” Appl. Phys. Express, vol. 6, pp. 022101, 2013.
    118. K. M. Huang, H. J. Chang, C. L. Ho, and M. C. Wu, “Enhanced light extraction efficiency of GaN-based LEDs with 3-D colloidal-photonic-crystal bottom reflector,” IEEE Photonics Technol. Lett., vol. 24, pp. 1298-1300, 2012.
    119. Y. J. Lee, C. J. Lee, and C. H. Chen, “Effect of surface texture and backside patterned reflector on the AlGaInP light-emitting diode: high extraction of waveguided light,” IEEE J. Quantum Electron., vol. 47, pp. 636-641, 2011.
    120. J. Son, L. K. Verma, A. J. Danner, C. S. Bhatia, and H. Yang, “Enhancement of optical transmission with random nanohole structures,” Opt. Express, vol. 19, pp. A35-A40, 2011.
    121. Y. C. Chang, J. K. Liou, and W. C. Liu, “Improved light extraction efficiency of a high-Power GaN-based light-emitting diode with a three-dimensional-photonic crystal (3-D-PhC) backside reflector,” IEEE Electron Devices Lett., vol. 34 , pp. 777-779, 2013.
    122. Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector,” J. Electron. Mater., vol. 32 , pp. 1523-1526, 2003.
    123. F. J´arai-Szab´o, Z. N´edaa, S. A. stilean, C. Farc˘au, and A. Kuttesch, “Shake-induced order in nanosphere systems,” Eur. Phys. J. E, vol. 23, pp. 153-159, 2007.
    124. Q. Zhang, K. H. Li, and H. W. Choi, “InGaN light-emitting diodes with indium-tin-oxide sub-micron lenses patterned by nanosphere lithography,” Appl. Phys. Lett., vol. 100, pp. 061120, 2012.
    125. R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a two-dimensional, ordered array of small latex particles,” Langmuir, vol. 11, pp. 3333-3336, 1995.
    126. E. M. Dre`ge, N. G. Skinner, and D. M. Byrne, “Analytical far-field divergence angle of a truncated gaussian beam,” Appl. Optics, vol. 39, pp. 4918-4925, 2000.
    127. H. Huang, J. Hu, and H. Wang, “Light-output enhancement of GaN-based light-emitting diodes with three-dimensional backside reflectors patterned by microscale cone array,” Sci. World J., vol. 2014, pp. 837586, 2014.
    128. T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsh, “Omnidirectional reflective contacts for light-emitting diodes,” IEEE Electron Device Lett., vol. 24, no. 11, pp. 683–685, 2003.
    129. J. Q. Xi, H. Luo, A. J. Pasquale, J. K. Kim, and E. F. Schubert, “High light-extraction efficiency in GaInN light-emitting diode with pyramid reflector,” IEEE Photonics Technol. Lett., vol. 18, pp. 2347-2349, 2006.
    130. Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector,” J. Electron. Mater., vol. 32, pp. 1523-1526, 2003.
    131. D. Steigerwald, S. Rudaz, H. Liu, R. S. Kern, W. Götz, and R. Fletcher, “III-V nitride semiconductors for high performance blue and green light emitting devices ,” JOM, vol. 49, pp. 18-23, 1997.
    132. J. K. Liou, C. C. Chen, P. C. Chou, Z. J. Tsai, Y. C. Chang, and W. C. Liu, “Implementation of a high-performance GaN-based light-emitting diode grown on a nanocomb-shaped patterned sapphire substrate,” IEEE J. Quantum Electron., vol. 50, pp. 973-980, 2014.
    133. T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, “Thermal stress in GaN epitaxial layers grown on sapphire substrates,” J. Appl. Phys., vol.77, pp. 4389-4392, 1995.
    134. D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett., vol. 96, pp. 201106, 2010.
    135. C. Geng, L. Zheng, H. Fang, Q. Yan, T. Wei, Z. Hao, X. Wang, and D. Shen, “Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching,” Nanotechnology, vol. 24, pp. 335301, 2013
    136. C. H. Chiu, L. H. Hsu, C. Y. Lee, C. C. Lin, B. W. Lin, S. J. Tu, Y. H. Chen, C.Y. Liu, W. C. Hsu, Y. P. Lan, J. K. Sheu, T. C. Lu, G. C. Chi, H. C. Kuo, S. C. Wang, and C.Y. Chang, “Light extraction enhancement of GaN-based light-emitting diodes using crown-shaped pattern sapphire substrates,” IEEE Photonics Technol. Lett., vol. 24, pp. 1212-1214, 2012.
    137. Y. K. Su , J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography,” Jpn. J. Appl. Phys., vol. 47, pp. 6706-6708, 2008.
    138. N. Okada , T. Egami, S. Miyoshi, R. Inomoto, K. Yamane, K. Tadatomo, T. Nishimiya, M. Hiramoto, and S. Motoyama, “InGaN-based light-emitting diodes fabricated on nano patterned sapphire substrates with pillar height of more than 600 nm by nanoimprint lithography,” Jpn. J. Appl. Phys., vol. 52, pp. 11NG02, 2013.
    139. Z. J. Tsai, J. K. Liou, and W. C. Liu, “Enhanced performance of a GaN-based LED prepared by an anodized aluminum oxide-nanoporous pattern sapphire substrate,” IEEE Electron Devices Lett., vol. 34, pp. 909-911, 2013.
    140. A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50±420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., vol. 84, pp. 6023-6026, 1998.
    141. G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Films, vol. 97, pp. 192-201, 1997.
    142. F. Li, L. Zhang and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater., vol. 10, pp. 2470-2480, 1998.
    143. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express, vol. 15, pp. 6670-6676, 2007.
    144. B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy Jr., J. Bang, and J. Kim, “Inductively coupled plasma etching of nano-patterned sapphire for flip-chip GaN light emitting diode applications,” Thin Solid Films, vol. 516, pp. 7744-7747, 2008.
    145. Y. H. Cho, J. Y. Kim, J. Kim, M. B. Shim, S. Hwang, S. H. Park, Y. S. Park, and S. Kim, “Quantum efficiency affected by localized carrier distribution near the V-defect in GaN based quantum well,” Appl. Phys. Lett., vol. 103, pp. 261101, 2013.
    146. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, pp. 643-645, 1996.
    147. C. Y. Hsieh, B. W. Lin, H. J. Cho, B. M. Wang, N. Chang, and Y.-C. S. Wu, “Improvement of epitaxy GaN quality using liquid-phase deposited nano-patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 24, pp. 2232-2234, 2012.
    148. L. Huang, T. Yu, Z. Chen, Z. Qin, Z. Yang, and G. Zhang, “Different degradation behaviors of InGaN/GaN MQWs blue and violet LEDs,” J. Lumines., vol. 129, pp. 1981-1984, 2009.
    149. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Krecthmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron. Device Lett., vol. 23, pp. 535-537, 2002.
    150. I. Martil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III-V nitrides,” J. Appl. Phys., vol. 81, pp. 2442-2445, 1997.
    151. W. Zhou, D. Ren, P. D. Dapkus, “Transmission electron microscopy study of defect reduction in two-step lateral epitaxial overgrown nonplanar GaN substrate templates,” J. Cryst. Growth, vol. 290, pp. 11-17, 2006.
    152. C J R Sheppard, “Approximate calculation of the reflection coefficient from a stratified medium,” J. Eur. Opt. Soc.-Pure Appl. Opt., vol. 4, pp. 665-669, 1995.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE