| 研究生: |
莊智閎 Chuang, Chih-Hung |
|---|---|
| 論文名稱: |
以低溫製程製備可撓式反置型有機太陽能電池之研究 Study of Inverted Organic Solar Cell on a Flexible Substrate by Low Temperature Process |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 有機太陽能電池 、可撓式 、低溫 |
| 外文關鍵詞: | Organic Solar Cell, Flexible, Low Temperature Process |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉由製程最佳化來製作可撓式有機太陽能電池元件,其主要研究方向分成三大部份,第一部份將一般反置式有機太陽能電池的高溫製程改變成低溫製程;第二部份以旋塗透明高導電液(PH1000)來取代熱蒸鍍方式成膜的金屬銀電極;第三部份利用低溫製程製作成可撓式有機太陽能電池元件。其中藉由ZnO稀釋最佳比例、PEDOT:PSS和Ag退火溫度、透明高導電液PH1000最佳轉速、退火溫度及時間來達到電子傳輸層、電洞傳輸層及銀電極參數最佳化,利用以上各種不同製程最佳化參數分別製作成四種反置式低溫有機太陽能電池元件與一般高溫有機太陽能電池做比較。
最終成功的製作出低溫製程及高分子電極之反置型可撓式基板有機太陽能電池元件,其銀電極之低溫玻璃光電轉換效率為2.24%、高分子電極之低溫玻璃效率可達1.89%、銀電極之低溫可撓式基板效率可達1.77%以及高分子電極之低溫可撓式基板效率為1.57%。
In order to reach the objective of inverted organic solar cell on a flexible substrate can be produced by optimizing process. There are three parts of this research: the first part is changing high temperature process into a low temperature process for the inverted organic solar cells on a glass. The second part is spin coating PH1000 which takes the place of thermal evaporation deposition of metal silver electrode on the organic solar cell. The third part is making inverted organic solar cell on a flexible substrate by low temperature processing. For those purposes, we use different optimizing parameters to make four types of inverted and low temperature organic solar cells. Such as the optimization of parameter of ZnO diluting, annealing temperature of PEDOT:PSS and Ag, the best spinning speed, annealing temperature and the amount of time of PH1000. Thus, we can compare low temperature cell with standard high temperature organic solar cell.
Finally, inverted organic solar cell is made successfully by using the low temperature process and polymer electrode on a flexible substrate. Power conversion efficiency (PCE) of solar cell on a glass substrate with Silver electrode is 2.24%, PCE of solar cell on a glass substrate with polymer electrode is 1.89%, PCE of solar cell on a flexible with Silver electrode is 1.77%, and PCE of solar cell on a flexible with polymer electrode is 1.57%.
[1] D. M. Chapin, "A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power," J.Appl.Phys.,25,676 (1954)
[2] K. Emery, W. Warta, M. A. Green, and Y. Hishikawa, "Solar Cell Efficiency Tables(Version 33)," Prog.Photovolt: Res.Appl., 7,85(2009)
[3] C. R. Wronski and D. E. Carlson, "Amorphous silicon solar cell," Appl.Phys.Lett., 28, 671(1976)
[4] K. riprapa and P. Sichanugrist "High efficiency amorphous/microcrystalline silicon solar cell fabricated on metal substrate," Photovoltaic Energy Conversion 2003. Proceedings of 3rd World Conference on Volume 3 , 2799 (2003)
[5] J. Hiltner, B. Egaas, K. Ramanathan, M. A. Contreras, A. Swartzlander, F. Hason and R. Noufi "Properties of 19.2% efficiency ZnO/CdS/Ce2 thin-film solar cells," Prog. Photovolt.:Res. Appl. 7 , 311 (1999)
[6] B. O'Regan & M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2," Nature, 353, 737-740 (1991)
[7] D. Kearns & M. Calvin, "Photovoltaic effect and photoconductivity in laminated organic systems," J. Chem. Phys., 29,950-951 (1958)
[8] C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phy. Lett., 48, 183-185 (1986)
[9] P. Peumans & S. R. Forrest, "Very-high-efficiency double-heterostructure opper phthalocyanine/C60 photovoltaic cells," Appl, Phys. Lett., 79,126-128 (2001)
[10] K. Matsumura, H. Ohigashi, A. Takahashi, and J. Tsukamoto, "A Schottky-barrier type solar-cell using polyacetylene," Jpn. J. Appl. Phys., 20,L127-L129 (1981)
[11] S. C. O'Brien, R. E. Curl, H. W. Kroto, R. E. Smalley, and J. R. Heath, "C60-buckminsterfulleren," Nature, 318,162-163 (1985)
[12] A.J. Heeger, K. Pakbaz, and G. Yu, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity," Appl. Phys. Lett., 64, 3422-3424 (1994)
[13] A. J. Heeger, J. Gao, J. Hummelen, G. Yu, and F. Wudl, "Polymer hotovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270, 1789-1791 (1995)
[14] C. Waldauf, P. Schilinsky, and C. J. Brabec, "Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors," Appl. Phys. Lett., 81, 3885-3887 (2002)
[15] R. S. Rittberger, F. Padinger, and N. S. Sariciftci, "Effects of postproduction treatment on plastic solar cells," Adv. Funct. Mater., 13, 85-88 (2003)
[16] K. Kim, J. Liu, M. A. Namboothiry, and D. L. Carroll, "Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photocoltaic," Appl. Phys. Lett. 90 , 163511 (2007)
[17] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, "Design Rules for Donors in Bulk-Heterojunction SolarCells—Towards 10% Energy-Conversion Efficiency," Advanced Materials.18,789-794,2006
[18] R. Gaudiana & C. J. Brabec, "Organic materials:fantastic plastic," Nat. Photonics2, 287–289 (2008)
[19] J. Huang, C.-W. Chu, V. Shrotriya, G. Li, and Y. Yang, "Efficient inverted Polymer Solar Cells," Appl, Phys. Lett., 88,253503-1 (2006)
[20] S. E. Shaheen, D. C. Olson, and M. S. White, N. Kopidakis, "Inverted bulk-heteroiunction organic photovoltaic device using a solution-derived ZnO underlayer," Appl, Phys. Lett., 89,143517 (2006)
[21] P. Schilinsky, M. Morana, P. Denk, C. Waldauf, K. Coakley, S. A. Choulis, and C. J. Brabec,"Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact," Appl, Phys. Lett., 89,233517 (2006)
[22] M. Dubosc, Y.J. Cheng, P.J. Li, C. H. Hsieh, C.H. Chen, R.M. Liang, and C.S. Hsu, "Highly efficient and stable inverted polymer solar cells integrated with across-linked fullerene material as an interlayer," J. Am. Chem. Soc., 1324887–4893 (2010)
[23] Claire Ray, Z. Xu, J. Xia, Y. Liang, S. T. Yue Wu, Gang Li, and Luping Yu, "For the Bright Future-Bulk Heteroiunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%," Adv. Funct. Mater., 22, E135-138 (2010)
[24] Y. Yang, J. Hou, S. Zhang, Y. Liang, H. -Y. Chen, G. Yang, L. Yu, Y. Wu, and G. Li., "Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency," Nature Photonics 3, 649-653 (2009)
[25] K.-M. Ho, J.-M. Park, K. S. Nalwa, and S. Chaudary, "On realizing higher efficiency polymer solar cells using a textured substrate platform," Adv. Mater. 23, pp. 112-116, 2011.
[26] A. Hinsch, M. Niggemann, A. Gombert, and M. Glatthaar, V. Wittwer, "Diffraction gratings and buried nano-electrodes—architectures for organic solar cells," Thin Solid Films 451-52, 619 (2004)
[27] G. Zhao, Y. He, Y. Li, "6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and lndene-C60 Bisadduct by Device Optimization," Adv. Funct. Mater., 22, 4355-4358 (2010)
[28] Bulent M. Basol, Vijay K. Kapur, "Flexible and light weight copper indium diselenide solar cells on polyimide substrates," Solar Energy Materials & Solar cells 43, 93-98 (1996)
[29] Christoph Lungenschmied, Gilles Dennler, Helmut Neugebauer, Serdar N. Sariciftci, "Flexible, long-lived, large-area, organic solar cells," Solar Energy Materials & Solar Cells, 91379–384 (2007)
[30] H. K. Roth, S. Sensfuss, and M. Al-Ibrahim, "Efficient large-area polymer solar cells on flexible substrates," Appl. Phys. Lett. 85, 1481 (2004)
[31] Seok-Soon Kim, Jang Jo, Seok-In Na, and Dong-Yu Kim, "Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes," Adv. Mater. 20, 1-7 (2008)
[32] Lars Blankenburg, Karin Schultheis, Hannes Schache, Steffi Sensfuss, and Mario Schrodner, "Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells," Solar Energy Materials & Solar Cells 93, 476–483 (2009)
[33] Mario Schrodner, Steffi Sensfuss, Hannes Schache, Karin Schultheis, Thomas Welzel, Klaus Heinemann, Roland Milker, Jan Marten, Lars Blankenburg, "Reel-to-reel wet coating by variation of solvents and compounds of photoactive inks for polymer solar cell production," Solar Energy Materials & Solar Cells 107, 283–291 (2012)
[34] David M. Tanenbaum, Henrik Friis Dam, Roland Rosch, Mikkel Jørgensen, Harald Hoppe, Frederik C. Krebs, "Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules," Solar Energy Materials & Solar Cells 97, 157–163 (2012)
[35] Masaya Nogi, Shinichiro Iwamoto, Antonio Norio Nakagaito, and Hiroyuki Yano, "Optically Transparent Nanofiber Paper," Adv. Mater, 21, 1595–1598 (2009)
[36] J. Parisi, C. J. Brabec,V. Dyakonov, N.S. Sariciftci, "Organic Photovoltaics: concepts and realization," Springer, New York 2003
[37] T. Kietzke, "Recent Advances in Organic Solar Cells", Advances in OptoElectronics, Volume 2007, 40285, 15 pages,2007
[38] S. R. Forrest, "The Limits to Organic Solars cells", Mrs. Bull. 30 , 28 (2005)
[39] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U. Scherf, E Harth, A. Gugel and K. Mullen, "Exciton diffusion and dissociation in coniugated polymer/fullerene blends and heterstructures" Phys. Rev. B59,15346 (1999)
[40] Moliton, A., Nunzi, J.-M., "How to model the behaviour of organic photovoltaic cells," Polym Int 0959–8103 (2006)
校內:2018-08-28公開