簡易檢索 / 詳目顯示

研究生: 莊智閎
Chuang, Chih-Hung
論文名稱: 以低溫製程製備可撓式反置型有機太陽能電池之研究
Study of Inverted Organic Solar Cell on a Flexible Substrate by Low Temperature Process
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 有機太陽能電池可撓式低溫
外文關鍵詞: Organic Solar Cell, Flexible, Low Temperature Process
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由製程最佳化來製作可撓式有機太陽能電池元件,其主要研究方向分成三大部份,第一部份將一般反置式有機太陽能電池的高溫製程改變成低溫製程;第二部份以旋塗透明高導電液(PH1000)來取代熱蒸鍍方式成膜的金屬銀電極;第三部份利用低溫製程製作成可撓式有機太陽能電池元件。其中藉由ZnO稀釋最佳比例、PEDOT:PSS和Ag退火溫度、透明高導電液PH1000最佳轉速、退火溫度及時間來達到電子傳輸層、電洞傳輸層及銀電極參數最佳化,利用以上各種不同製程最佳化參數分別製作成四種反置式低溫有機太陽能電池元件與一般高溫有機太陽能電池做比較。
    最終成功的製作出低溫製程及高分子電極之反置型可撓式基板有機太陽能電池元件,其銀電極之低溫玻璃光電轉換效率為2.24%、高分子電極之低溫玻璃效率可達1.89%、銀電極之低溫可撓式基板效率可達1.77%以及高分子電極之低溫可撓式基板效率為1.57%。

    In order to reach the objective of inverted organic solar cell on a flexible substrate can be produced by optimizing process. There are three parts of this research: the first part is changing high temperature process into a low temperature process for the inverted organic solar cells on a glass. The second part is spin coating PH1000 which takes the place of thermal evaporation deposition of metal silver electrode on the organic solar cell. The third part is making inverted organic solar cell on a flexible substrate by low temperature processing. For those purposes, we use different optimizing parameters to make four types of inverted and low temperature organic solar cells. Such as the optimization of parameter of ZnO diluting, annealing temperature of PEDOT:PSS and Ag, the best spinning speed, annealing temperature and the amount of time of PH1000. Thus, we can compare low temperature cell with standard high temperature organic solar cell.
    Finally, inverted organic solar cell is made successfully by using the low temperature process and polymer electrode on a flexible substrate. Power conversion efficiency (PCE) of solar cell on a glass substrate with Silver electrode is 2.24%, PCE of solar cell on a glass substrate with polymer electrode is 1.89%, PCE of solar cell on a flexible with Silver electrode is 1.77%, and PCE of solar cell on a flexible with polymer electrode is 1.57%.

    目錄 考試合格證明 中文摘要 英文摘要 致謝 目錄 Ⅰ 表目錄 Ⅳ 圖目錄 Ⅴ 第一章 序論 1 1.1 前言 1 1.2 太陽能電池歷史簡介 1 1.3 有機太陽能電池發展歷史與現況 3 1.4 可撓式有機太陽能電池發展 7 1.5 研究動機 9 第二章 實驗原理 11 2.1 太陽能電池基本原理 11 2.1.1 標準測試及元件參數介紹 11 2.1.2 高分子有機太陽能電池運作機制 14 第三章 實驗方法及步驟 17 3.1 實驗材料 17 3.2 使用儀器 19 3.3 實驗流程 21 3.3.1 一般反置型有機太陽能電池元件製作 21 3.3.2以銀為電極之低溫元件製作 26 3.3.3透明高導電性溶液介紹與其低溫元件製作 27 3.4 軟性基板介紹 28 3.4.1以銀為電極之低溫軟性基板元件製作 29 3.4.2高導電性溶液應用於軟性基板元件之製作 31 第四章 實驗結果與討論 33 4.1一般反置型有機太陽能電池元件(Base)光電轉換效率 33 4. 2低溫反置型有機太陽能電池元件 34 4.2.1以銀為電極之低溫玻璃反置型有機太陽能電池 34 4.2.2 Base與金屬銀電極之低溫反置型太陽能電池壽命 測試比較 37 4.2.3以高分子為電極之低溫玻璃反置型有機太陽能電 池 38 4. 3低溫可撓式反置型有機太陽能電池製作 40 4.3.1以金屬銀為電極之可撓式反置型有機太陽能電池 元件 40 4.3.2以高分子為電極之可撓式反置型有機太陽能電池 元件 41 第五章 實驗總結與建議 43 參考文獻 44 自述 73

    [1] D. M. Chapin, "A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power," J.Appl.Phys.,25,676 (1954)
    [2] K. Emery, W. Warta, M. A. Green, and Y. Hishikawa, "Solar Cell Efficiency Tables(Version 33)," Prog.Photovolt: Res.Appl., 7,85(2009)
    [3] C. R. Wronski and D. E. Carlson, "Amorphous silicon solar cell," Appl.Phys.Lett., 28, 671(1976)
    [4] K. riprapa and P. Sichanugrist "High efficiency amorphous/microcrystalline silicon solar cell fabricated on metal substrate," Photovoltaic Energy Conversion 2003. Proceedings of 3rd World Conference on Volume 3 , 2799 (2003)
    [5] J. Hiltner, B. Egaas, K. Ramanathan, M. A. Contreras, A. Swartzlander, F. Hason and R. Noufi "Properties of 19.2% efficiency ZnO/CdS/Ce2 thin-film solar cells," Prog. Photovolt.:Res. Appl. 7 , 311 (1999)
    [6] B. O'Regan & M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2," Nature, 353, 737-740 (1991)
    [7] D. Kearns & M. Calvin, "Photovoltaic effect and photoconductivity in laminated organic systems," J. Chem. Phys., 29,950-951 (1958)
    [8] C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phy. Lett., 48, 183-185 (1986)
    [9] P. Peumans & S. R. Forrest, "Very-high-efficiency double-heterostructure opper phthalocyanine/C60 photovoltaic cells," Appl, Phys. Lett., 79,126-128 (2001)
    [10] K. Matsumura, H. Ohigashi, A. Takahashi, and J. Tsukamoto, "A Schottky-barrier type solar-cell using polyacetylene," Jpn. J. Appl. Phys., 20,L127-L129 (1981)
    [11] S. C. O'Brien, R. E. Curl, H. W. Kroto, R. E. Smalley, and J. R. Heath, "C60-buckminsterfulleren," Nature, 318,162-163 (1985)
    [12] A.J. Heeger, K. Pakbaz, and G. Yu, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity," Appl. Phys. Lett., 64, 3422-3424 (1994)
    [13] A. J. Heeger, J. Gao, J. Hummelen, G. Yu, and F. Wudl, "Polymer hotovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270, 1789-1791 (1995)
    [14] C. Waldauf, P. Schilinsky, and C. J. Brabec, "Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors," Appl. Phys. Lett., 81, 3885-3887 (2002)
    [15] R. S. Rittberger, F. Padinger, and N. S. Sariciftci, "Effects of postproduction treatment on plastic solar cells," Adv. Funct. Mater., 13, 85-88 (2003)
    [16] K. Kim, J. Liu, M. A. Namboothiry, and D. L. Carroll, "Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photocoltaic," Appl. Phys. Lett. 90 , 163511 (2007)
    [17] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, "Design Rules for Donors in Bulk-Heterojunction SolarCells—Towards 10% Energy-Conversion Efficiency," Advanced Materials.18,789-794,2006
    [18] R. Gaudiana & C. J. Brabec, "Organic materials:fantastic plastic," Nat. Photonics2, 287–289 (2008)
    [19] J. Huang, C.-W. Chu, V. Shrotriya, G. Li, and Y. Yang, "Efficient inverted Polymer Solar Cells," Appl, Phys. Lett., 88,253503-1 (2006)
    [20] S. E. Shaheen, D. C. Olson, and M. S. White, N. Kopidakis, "Inverted bulk-heteroiunction organic photovoltaic device using a solution-derived ZnO underlayer," Appl, Phys. Lett., 89,143517 (2006)
    [21] P. Schilinsky, M. Morana, P. Denk, C. Waldauf, K. Coakley, S. A. Choulis, and C. J. Brabec,"Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact," Appl, Phys. Lett., 89,233517 (2006)
    [22] M. Dubosc, Y.J. Cheng, P.J. Li, C. H. Hsieh, C.H. Chen, R.M. Liang, and C.S. Hsu, "Highly efficient and stable inverted polymer solar cells integrated with across-linked fullerene material as an interlayer," J. Am. Chem. Soc., 1324887–4893 (2010)
    [23] Claire Ray, Z. Xu, J. Xia, Y. Liang, S. T. Yue Wu, Gang Li, and Luping Yu, "For the Bright Future-Bulk Heteroiunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%," Adv. Funct. Mater., 22, E135-138 (2010)
    [24] Y. Yang, J. Hou, S. Zhang, Y. Liang, H. -Y. Chen, G. Yang, L. Yu, Y. Wu, and G. Li., "Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency," Nature Photonics 3, 649-653 (2009)
    [25] K.-M. Ho, J.-M. Park, K. S. Nalwa, and S. Chaudary, "On realizing higher efficiency polymer solar cells using a textured substrate platform," Adv. Mater. 23, pp. 112-116, 2011.
    [26] A. Hinsch, M. Niggemann, A. Gombert, and M. Glatthaar, V. Wittwer, "Diffraction gratings and buried nano-electrodes—architectures for organic solar cells," Thin Solid Films 451-52, 619 (2004)
    [27] G. Zhao, Y. He, Y. Li, "6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and lndene-C60 Bisadduct by Device Optimization," Adv. Funct. Mater., 22, 4355-4358 (2010)
    [28] Bulent M. Basol, Vijay K. Kapur, "Flexible and light weight copper indium diselenide solar cells on polyimide substrates," Solar Energy Materials & Solar cells 43, 93-98 (1996)
    [29] Christoph Lungenschmied, Gilles Dennler, Helmut Neugebauer, Serdar N. Sariciftci, "Flexible, long-lived, large-area, organic solar cells," Solar Energy Materials & Solar Cells, 91379–384 (2007)
    [30] H. K. Roth, S. Sensfuss, and M. Al-Ibrahim, "Efficient large-area polymer solar cells on flexible substrates," Appl. Phys. Lett. 85, 1481 (2004)
    [31] Seok-Soon Kim, Jang Jo, Seok-In Na, and Dong-Yu Kim, "Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes," Adv. Mater. 20, 1-7 (2008)
    [32] Lars Blankenburg, Karin Schultheis, Hannes Schache, Steffi Sensfuss, and Mario Schrodner, "Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells," Solar Energy Materials & Solar Cells 93, 476–483 (2009)
    [33] Mario Schrodner, Steffi Sensfuss, Hannes Schache, Karin Schultheis, Thomas Welzel, Klaus Heinemann, Roland Milker, Jan Marten, Lars Blankenburg, "Reel-to-reel wet coating by variation of solvents and compounds of photoactive inks for polymer solar cell production," Solar Energy Materials & Solar Cells 107, 283–291 (2012)
    [34] David M. Tanenbaum, Henrik Friis Dam, Roland Rosch, Mikkel Jørgensen, Harald Hoppe, Frederik C. Krebs, "Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules," Solar Energy Materials & Solar Cells 97, 157–163 (2012)
    [35] Masaya Nogi, Shinichiro Iwamoto, Antonio Norio Nakagaito, and Hiroyuki Yano, "Optically Transparent Nanofiber Paper," Adv. Mater, 21, 1595–1598 (2009)
    [36] J. Parisi, C. J. Brabec,V. Dyakonov, N.S. Sariciftci, "Organic Photovoltaics: concepts and realization," Springer, New York 2003
    [37] T. Kietzke, "Recent Advances in Organic Solar Cells", Advances in OptoElectronics, Volume 2007, 40285, 15 pages,2007
    [38] S. R. Forrest, "The Limits to Organic Solars cells", Mrs. Bull. 30 , 28 (2005)
    [39] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U. Scherf, E Harth, A. Gugel and K. Mullen, "Exciton diffusion and dissociation in coniugated polymer/fullerene blends and heterstructures" Phys. Rev. B59,15346 (1999)
    [40] Moliton, A., Nunzi, J.-M., "How to model the behaviour of organic photovoltaic cells," Polym Int 0959–8103 (2006)

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE