| 研究生: |
連婉君 Lien, Wan-Chun |
|---|---|
| 論文名稱: |
一維薛丁格方程之特徵值問題數值計算 Numerical Computation of Eigenvalue Problems for 1-D Schrödinger Equations |
| 指導教授: |
王辰樹
Wang, Chern-Shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 軸對稱 、非拋物線的有效質量近似 、薛丁格方程 |
| 外文關鍵詞: | radius symmetric, non-parabolic effective mass approximation, Schrodinger equation |
| 相關次數: | 點閱:142 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們考慮一維的薛丁格方程 (Schrödinger equation), 並求其最低能階。 在本文中我們僅討論其波函數(特徵函數)為軸對稱(radius symmetric)的情形。 關於質量的逼近, 我們使用非拋物線的有效質量近似 (non-parabolic
effective mass approximation)。
這裡主要的工作是將一維薛丁格方程離散化後轉變成---有理多項式, 或多項式型矩陣特徵值問題, 並且讓其係數矩陣為對稱, 之後利用一些數值方法去找出最小的正特徵值。
We consider one dimension Schrödinger Equation,and find the lowest energy. In this paper, we only discuss the case of that the wave function is radius symmetric. About the approximation of the mass, we use non-parabolic effective mass approximation.
Here, our work is to transform 1-D Schrödinger Equation forming a eigenvalue problem of a rational form or a polynomial form, and then let the coefficient matrix be symmetric. After that using some numerical methods find out the smallest positive eigenvalue.
[1]Z.Bai,J.Demmel,J.Dongarra,A.Ruhe,and H.van der Vorst,Templates for the Solution of Algebraic Eigenvalue Problems:A Practical Guide SIAM,2000.
[2]P.Davids and D.-S.Betts,Quantum Mechanics , second edition CHAMPAN&HALL,1994.
[3]J.-S.Guo,W.-W.Lin,and C.-S.Wang,Nonequivalent deflation for the solution of matrix latent value problems ,Lin. Alg. Appl.231 (1995),pp.15 –45.
[4]S.Gasiorowicz,Quantum Physics,second edition John Wiley &Sons,1996.
[5]T.-M.Hwang,W.-W.Lin,J.-L.Liu,andW.Wang,
Numerical computation of cu-bic eigenvalue problems for a semiconductor quantum dot model with non-parabolic effective mass approximation ,
Tech.Rep.Te hnical report,National Center for
Theoretical Sciences,2001.
[6]P.Harrison,Quantum Wells , Wires and Dots : Theoretical and Com-putional Physics John Wiley &Sons,2000.
[7]J.Juang,W.-W.Lin,and S.-F.Shieh,Eigenvalue problems for one-dimensional discrete schrodinger operators with symmetric boundary condictions ,
SIAM J.Matrix Anal. Appl.23 (2001),pp.524–533.
[8]C.C.Paige,Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Sym-metric
Matrix ,J. Inst. Math. Appl.18 (1976),pp.341–349.
[9]Y.Saad,Numerical Methods for Large Eigenvalue Problem Manhester University Press,1992.
[10]曾謹言 , 量子力學導論, 凡異出版社,1993.
[11]曾謹言,量子力學(卷I),第三版, 凡異出版社,2001.