簡易檢索 / 詳目顯示

研究生: 黃則德
Huang, Tse-Te
論文名稱: 基於兩軸穩定平台之撲翼微型飛行器動態反應與姿態控制
Dynamic Response and Attitude Control Based on a Two-Axis Stability Platform for a Flapping-Wing Micro Air Vehicle
指導教授: 陳偉良
Chan, Woei-Leong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 91
中文關鍵詞: 無尾撲翼拍撲平面調變翼根調變閉環PID控制動作捕捉系統
外文關鍵詞: Tailless FWMAV, wing stroke modulation, wing-root modulation, closed‐loop PID control, motion capture system
相關次數: 點閱:11下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究介紹了一種新型無尾撲翼微型飛行器(FWMAV)的整體設計與初步實驗驗證。飛行器安裝於雙軸姿態恢復平台上,其撲翼機構融合了拍撲平面(stroke‐plane)調變與翼根(wing‐root)調變兩種常見控制策略的優勢,實現無尾情況下的俯仰與偏航協調操控。為了定量評估動態響應與抗擾能力,飛行器固定在可施加可控俯仰/偏航擾動的雙軸測試平台上,並透過 Vicon® 動作捕捉系統實時捕捉姿態,將測得數據輸入 MATLAB® 中的比例積分微分控制器 (PID 控制器)。控制器輸出經自製脈衝位置調變 (PPM) 生成器轉換後,同步驅動兩台無刷電機與兩個線性伺服機,使拍撲平面與翼根角度精準可調。本研究於控制器設計階段前,先透過實驗建立動態模型,以不同的脈衝寬度調變(PWM) 輸入控制馬達,利用 ATI® Mini40 六軸傳感器和高速攝影機測量垂直推力 (升力) 與拍翼頻率,結果顯示 PWM 輸入與升力呈線性關係。除升力量測外,本研究亦利用高速攝影機進行觀測,建立翼根角度調變之動態模型,並將其整合至飛行器整體動態模型中。初步閉環控制實驗證明,該架構能在俯仰/偏航擾動後迅速恢復穩定姿態。此工作為未來擴展至全三軸自主飛行與無尾撲翼 MAV 的全自主穩定化奠定了基礎。

    This work describes the design and initial experimental assessment of a novel tailless flapping‐wing micro aerial vehicle (FWMAV) mounted on a dual‐axis attitude recovery platform. The flapping mechanism combines elements of both stroke‐plane and wing‐root modulations to achieve coordinated pitch and yaw maneuvers without a tail surface. To quantify dynamic performance and disturbance rejection, the MAV is secured on a dual‐axis recovery platform that imposes controlled pitch and yaw perturbations while an eight‐camera Vicon® motion capture system provides real‐time attitude feedback. This data feeds a MATLAB®‐based proportional-integral-derivative (PID) controller, whose outputs are encoded via a custom pulse-position-modulation (PPM) generator to drive two brushless motors and two linear servos—enabling precise stroke‐plane and wing‐root adjustments. Dynamic modelling was performed before the implementation of the controller. Thrust and flapping frequency were measured under varying pulse-width-modulation (PWM) commands for motor speed control, using an ATI® Mini40 load cell and high‐speed videography, revealing a near‐linear PWM‐to‐lift mapping and slight left–right wing asymmetries, which are corrected through calibrated allocation. The dynamic model of the wing-root modulation was also developed and incorporated into the overall dynamic model of the flapping wing platform. Preliminary closed‐loop tests show that the proposed control architecture successfully restores stable attitude following pitch/yaw disturbances. These results establish a foundation for extending the system to full three‐axis stabilization and autonomous flight of tailless flapping‐wing MAVs.

    摘要 2 ABSTRACT 3 ACKNOWLEDGMENT 4 TABLE OF CONTENTS 5 LIST OF TABLES 8 LIST OF FIGURES 9 CHAPTER I INTRODUCTION 13 1.1 BACKGROUND 13 1.2 MOTIVATION 15 1.3 OBJECTIVES 16 1.4 LITERATURE REVIEW 16 1.4.1 Current status of research on Flapping Wing flight 16 1.4.2 Comparison of On-Tail and Tailless Aircraft 17 1.4.3 Tailless Flapping-Wing Flight Control Methods 19 1.4.4 Tailless Flapping-Wing with PID Control 22 1.5 THESIS ORGANIZATION 23 CHAPTER II SYSTEM DESIGN AND FABRICATION 24 2.1 OVERVIEW OF THE TAILLESS FLAPPING-WING AIRCRAFT DESIGN 24 2.2 FIRST PROTOTYPE DESIGN 25 2.2.1 The fuselage assembly 25 2.2.2 Gearbox 26 2.2.3 The Wings 26 2.2.4 Issues with the first prototype 28 2.3 FINAL PROTOTYPE DESIGN 28 2.3.1 Redesign of the Fuselage Assembly 29 2.3.2 Improvement in Gearbox 29 2.4 ELECTRONIC DEVICES 31 2.4.1 The Brushless Motor 31 2.4.2 The Electronic Speed Control (ESC) 32 2.4.3 The Linear Servo 32 2.4.4 The Receiver 33 2.4.5 NX10 Transmitter 34 2.5 DIMENSION & MASS PROPERTIES 36 2.6 ATTITUDE CONTROL STRATEGY 38 CHAPTER III EXPERIMENTAL SETUP AND METHODS 44 3.1 INTRODUCTION TO MEASUREMENT EQUIPMENT 44 3.1.1 High speed camera 44 3.1.2 Load cell 45 3.1.3 Motion capture system 45 3.2 FLAPPING FREQUENCY TEST 46 3.3 THRUST MEASUREMENT 48 3.4 FLIGHT CONTROL SYSTEM 50 3.4.1 Communication Link and PPM Injection 50 3.4.2 Two-Axis Support Platform 53 3.5 PID CONTROLLER DESIGN 54 3.5.1 Simulink Design Architecture 55 3.5.2 Step Interference Experimental Design 59 3.6 OPEN-LOOP TRANSFER FUNCTION MODELING AND DERIVATION 61 3.6.1 First‐Order Lag Modeling of Servo/Rocker Arm 62 3.6.2 Linear Relationship Between Angle and Torque 63 3.6.3 Open-Loop Model Structure 63 3.6.4 Parameter Identification 64 3.7 ROOT LOCUS ANALYSIS WITH THE PID CONTROLLER 66 CHAPTER IV RESULTS AND DISCUSSION 71 4.1 FLAPPING FREQUENCY 71 4.2 THRUST AND COUPLING EFFECT OF FLAPPING-WING 73 4.3 STEP RESPONSE TO DISTURBANCE 75 4.3.1 Pitch control only measurement 76 4.3.2 Yaw control only measurement 78 CHAPTER V CONCLUSIONS AND SUMMARY 81 CHAPTER VI FUTURE WORK 83 REFERENCES 84

    [1] H.-V. Phan and H. C. Park, “Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions,” Progress in Aerospace Sciences, vol. 111, p. 100573, 2019. DOI: 10.1016/j.paerosci.2019.100573.

    [2] Shen, T., Tu, Z., Li, D., Kan, zi , & Xiang, jinwu . (2022).AerodynamicCharacteristicsof Bristled Wings in Flapping Flight. Aerospace, 9, 605.

    [3] H.-V. Phan, T. Kang, and H. C. Park, “Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control,” Bioinspiration & Biomimetics, vol. 12, no. 3, 036006, Apr. 2017.

    [4] Q.-V. Nguyen and W. L. Chan, “Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation,” Bioinspiration & Biomimetics, vol. 14, no. 1, p. 016015, 2019.

    [5] M. Karášek, F. T. Muijres, C. de Wagter, B. D. W. Remes, and G. C. H. E. de Croon, “A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns,” Science, vol. 361, no. 6407, pp. 1089–1094, 2018.

    [6] yang, L. J. (2012). The Micro-Air-Vehicle Golden Snitch and Its Figure-of-8 Flapping. Journal of Applied Science and Engineering, 15(3), 197–212.

    [7] X. Zheng, J. Li, and Y. Ming, “Dynamic Stability and Flight Control of Biomimetic Flapping-Wing Micro Aerial Vehicles,” Aerospace, vol. 8, no. 12, art. 362, 2021. doi:10.3390/aerospace8120362.

    [8] L. Wang, B. Song, Z. Sun, and X. Yang, “Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings,” Chinese Journal of Aeronautics, vol. 36, no. 11, pp. 1–19, Mar. 2023.

    [9] Y. Wang, D. Zhao, and Z. Yan, “Reinforcement learning based recovery flight control for flapping-wing micro-aerial vehicles under extreme attitude,” SN Applied Sciences, vol. 6, art. 650, 2024. doi:10.1007/s42452-024-650.

    [10] Kajak K M, Karásek M, Chu Q P, de Croon G C H E. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design. Bioinspiration & Biomimetics 2019;14(4):046008.

    [11] J. L. Verboom, S. Tijmons, C. de Wagter, B. Remes, R. Babuška, and G. C. H. E. de Croon, “Attitude and altitude estimation and control on board a flapping wing micro air vehicle,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 5846–5851.

    [12] Kim, I., Park, H., Kim, S., Suk, J., & Cho, S. (2018). Disturbance Observer Based Control Design of Flapping-Wing MAV Considering Model Uncertainties.

    [13] W. L. Chan, Q. V. Nguyen, and M. Debiasi, “Pitch and Yaw Control of Tailless Flapping Wing MAVs by Implementing Wing Root Angle Deflection,” in Proc. Int. Micro Air Veh. Conf. and Competitions, 2014.

    [14] Chen, H. Y. (2024). Longitudinal Dynamic Model Construction for a Flapping Wing Micro Air Vehicle. NCKU.

    [15] J.-H. Han, Y.-J. Han, H.-H. Yang, S.-G. Lee, and E.-H. Lee, “A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles,” Aerospace, vol. 10, no. 6, art. 554, 2023. DOI: 10.3390/aerospace10060554.

    [16] Park, H., Kim, S., & Suk, jinyoung . (2025). Tailless Control of a Four-Winged Flapping-Wing Micro Air Vehicle with Wing Twist Modulation. Bioinspir. Biomim, 20, 026005.

    [17] Vicon DataStream SDK documentation. https://help.vicon.com/space/DSSDK112

    [18] Khather, S. I., A. ibrahim, M., & Ibrahim, M. H. (2024). PID Controller for A Bearing Angle Control in SelfDriving Vehicles. Journal of Robotics and Control (JRC), 5(3). https://doi.org/10.18196/jrc.v5i3.21612

    [19] Katsuhiko, O. (2010). Modern Control Engineering (5th ed.). Pearson.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE