簡易檢索 / 詳目顯示

研究生: 鄭庭安
Cheng, Ting-An
論文名稱: 木構造柱梁接點預製金屬接合件的旋轉行為與性能優化
Rotational Behavior and Performance Optimisation of Beam-and-Column Timber Connection Made of Prefabricated Metallic Elements
指導教授: 葉玉祥
Yeh, Yu-Hsiang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 柱梁接點預製金屬接合件自攻螺絲旋轉行為性能優化
外文關鍵詞: Beam-and-column joints, prefabricated metallic connectors, self-tapping screw, rotational behavior, performance optimisation
相關次數: 點閱:97下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以國產福杉作為研究對象,探討使用預製金屬件接合的木構造柱梁接點的旋轉行為,並透過自攻螺絲補強,比較補強前後及不同型號的預製金屬接合件在結構性能上的差異。預製金屬件不僅具有足夠的剪力強度,施工便利及高精確度更是此構法具高競爭力和未來發展潛力的原因。本研究使用的預製金屬件規格為40 x 90 mm,厚度12mm,木材試體部分使用斷面120 x 120 mm實木柱及斷面120 x 180mm的膠合集成梁,並選用直徑8mm的全牙自攻螺絲作為補強材。
    旋轉試驗根據實驗參數分為四組:無補強(None reinforcement,Nr)、預補強30度(Pre-reinforcement 30°,Pr30)、預補強45度(Pre-reinforcement 45°,Pr45)及後補強45度(Repair reinforcement 45°,Rr45)。其中,無補強組單純測試接合件的抗彎性能並作為對照組;預補強組比較一對自攻螺絲以不同鎖入角度鎖入對補強效益之影響;後補強組則是在無補強組實驗至破壞後,以45度進行補強修復。接著藉由足尺的旋轉試驗取得接點的極限彎矩、降伏彎矩、旋轉勁度和破壞模式,評估接合件的抗彎性能並透過分析實驗數據及等式推導探討不同補強模式對於結構性能的效益。
    實驗結果顯示:預補強30度(Pr30)、預補強45度(Pr45)的極限彎矩分別較無補強(Nr)提升了44.4%和40%;旋轉勁度則提升了39.1%和28.6%;而後補強45度(Rr45)的極限彎矩雖也較無補強組提升了28.9%,但旋轉勁度方面降低了56%,以此判斷為因木料本身纖維遭破壞而難以回復原有對螺絲之握裹力外,接點的極限彎矩及降伏彎矩均因自攻螺絲的補強而獲得提升。預補強45度(Pr45)及後補強45度(Rr45)除在旋轉勁度之差異外,兩者的極限彎矩非常接近,僅相差2.3%,說明以同角度補強能獲得相同之效益;而比較不同角度的補強方式,預補強30度(Pr30)的極限彎矩及旋轉勁度分別略高於預補強45度(Pr45)4.4%和10.5%。比較不同規格接合件的實驗結果,同樣進行螺絲補強之接點,使用SHERPA S20鐵件之接點在極限抗彎和旋轉勁度分別約為使用S15鐵件之接點的1.16~1.2倍和1.5~2倍。未螺絲補強之試體(Nr)在極限強度上無明顯差異,但在勁度表現上卻相差將近兩倍,推測是因鐵件長度及鎖固之自攻螺絲增加使其在勁度上有如此差異。
    本研究的實驗結果可作為未來接合件開發及優化方式之參考,除接合件設計成細長型以利補強間距外,在梁端鐵件使用較柱端長的鎖固螺絲以彌補平行纖維方向鎖入導致強度較弱之問題,更需考量公母鐵件之緊固機制已排除預期外之破壞模式發生。

    The paper is focused on the rotational behaviour of beam-to-column timber joint with prefabricated metallic connector and use self-tapping screws to enhance its structural performance. The advantages of prefabricated metallic connectors are precise, simple and fast for assembling during construction. This research used solid timber columns, whose size is 120×120×900 mm, and 120×180×1200 mm glulam beams, which are made of two pieces of solid timber with a thickness of 900mm. Both beam and column are made by Cunninghamia lanceolata. The self-tapping screw (STS) is made by local manufacturers in Taiwan.

    The experiments consist of four groups of timber joints with different configurations: [I] None reinforcement (Nr) as a control group; [II] Pre-reinforcement in 30 degrees (Pr30); [III] Pre-reinforcement in 45 degrees, which is drilled with a pair of STSs at a different angle before the experiment started; [IV] Repair-reinforcement in 45 degrees (Rr45), which is drilled by the STS at 45 degrees after group Nr loaded to failure. The experiments of beam-to-column joints use full-scale tests to evaluate rotational behaviour, including maximum bending moment, yielding bending moment and rotational stiffness.

    The experiment results indicate that the application of STS reinforcements can effectively enhance the performance of beam-to-column joints. Overall, the moment-resisting capacities of group Pr30, Pr45 and Rr45 are 44.4%, 40% and 28.9% higher than group Nr, respectively. The performance of beam-to-column joints was mainly influenced by the angle of STS. The value of maximum moment-resisting capacities of group Pr30 is 4.4% higher than group Pr45. Group Pr30 and group Pr45 have similar moment-resisting capacities. Meanwhile, the rotational stiffness can be improved except group Rr45. It is presumed that the screw’s withdrawal resistance cannot be repaired because the grain of the timber itself has already failed.

    This study shows that either pre-reinforcement or repair-reinforcement is beneficial to the performance of timber joints. The results of this study can be used as a reference for future research and optimisation of timber beam-to-column joints.

    第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 3 1-3 研究範圍與流程 4 1-3-1 研究範圍 1-3-2 研究流程 第二章 文獻回顧與相關研究現況 6 2-1 現代高層木構造 6 2-2 結構用木質複合材料 10 2-3 國產材發展及相關研究現況 14 2-4 自攻螺絲之補強 17 2-5 文獻回顧小結 22 第三章 實驗規劃 23 3-1 試體規劃 23 3-1-1 旋轉試驗的試體製作與實驗前整備 25 3-1-2 拉拔試體製作與實驗前整備 26 3-1-3 預製金屬接合件整備 28 3-2 試體參數 31 3-2-1 旋轉試驗試體規劃 31 3-2-2 拉拔試驗各組規劃 32 3-3 實驗方法 33 3-3-1 實驗流程 33 3-3-2 實驗架規劃 34 3-4 補強鎖入規劃 36 3-4-1 補強規劃-45度 37 3-4-2 補強規劃-30度 38 3-5 旋轉角與彎矩 39 3-5-1 旋轉角的計算 39 3-5-2 彎矩的計算 40 3-5-3 旋轉勁度的計算 41 第四章 實驗結果與分析 4-1 實驗結果與數據 42 4-1-1 拉拔試驗之結果與數據 42 4-1-2 接點旋轉試驗之結果與數據 43 4-2 接點旋轉試驗各類參數實驗結果比較 44 4-2-1 無補強 (Nr) -實驗結果 44 4-2-2 後補強45度 (Rr45) -實驗結果 46 4-2-3 預補強45度 (Pr45) -實驗結果 48 4-2-4 預補強30度 (Pr30) -實驗結果 50 4-3 實驗結果歸納與比較 52 4-3-1 破壞模式及實驗歷程 52 4-3-2 補強效益比較 68 4-3-3 鐵件差異對於實驗結果的影響 71 4-4 實驗結果印證與彎矩驗證 73 4-4-1 計算方式與各項參數 73 4-4-2 等式推導 74 4-4-3 驗證結果 76 第五章 結論與建議 5-1 研究結論 78 5-2 後續研究建議 79 參考文獻 80 附錄A 各組木材試體參數 82 附錄B 拉拔實驗之 各組試體紀錄 83 附錄C 接點旋轉實驗記錄表 95 附錄D 接點旋轉實驗之各組試體紀錄 96

    1. 中華木質構造建築協會 (民94),梁柱工法木構造建築物(住宅)之施工技術手冊,行政院農委會林務局
    2. 內政部營建署 (民100),木構造建築物設計及施工技術規範
    3. 王益真. (2016),木結構新革命¬-綠色高樓建築. 林業研究專訊. p38-39. 2 p.
    4. 王劭瑋 (2020),國產福杉柱梁接點以商用鐵件補強的旋轉行為〔未出版之碩士論文〕。國立成功大學建築研究所。
    5. 日經建築編 (2017)、蔡孟廷譯 (2019),世界新式木造建築設計:實踐都市高層木造建築的實務與理論全集,臺北市:麥浩斯出版股份有限公司
    6. 吳亞杰、宋曉濱、張偉平、蔣銳 (2015),自攻螺絲修復縱向開裂木柱試驗研究,結構工程師,31(2)。
    7. 林法勤, 與塗三賢. (2007). 台灣木構造房屋建築市場概況. 林業研究專訊. p10-13. 4 p.。
    8. 林俊成與陳溢宏 (2015). 2003~2013年臺灣實木產品貿易分析.中華林學季刊,48(1),71-86。
    9. 程小武、李銀鵬、劉偉慶、陸偉東、劉杏杏 (2016). 自攻螺釘在杉木中的抗拔性能試驗研究,南京工業大學學報 (自然科學版),38(5)。
    10. 葉民權、林玉麗、鍾佩芬、陳怡安、葉釋璟 (2016),自攻螺絲應用於集成材柱梁接合之補強,林產工業,35(3),123~134。
    11. 葉民權、林玉麗、陳怡臻、郭啟一、林育丞 (2017),柳杉集成材梁與梁之接合強化技術開發,林產工業,36(1),1~12。
    12. 葉民權、林玉麗、宋雲煒 (2018),結構用自攻螺絲在木材之垂直引拔抵抗性能評估,台灣林業科學,33(2),109-23。
    13. 葉民權、林玉麗、鍾佩芬、陳怡安 (2019),自攻螺絲應用於集成材梁柱接合剪斷抵抗性能之補強研究,台灣林業科學,34(2),113-25。
    14. 詹為巽與林俊成 (2016),國內製材業者使用國產木材之現況,林業研究專訊,23(6), 114-117。
    15. 劉慧芬與何敏娟 (2015),自攻螺釘參數設置對膠合木梁柱節點受力性能的影響,建築結構學報。
    16. 陸偉東、孫洪鋒、劉偉慶 (2016),自攻螺絲增強膠合木梁柱螺栓節點受力性能試驗研究,建築結構學報。
    17. 蔡孟廷、方尹萍、張紋韶 (2018),Timberize TAIWAN─都市木造的未來:新式木結構建築沿革與展望的完整報告,臺北市:麥浩斯出版股份有限公司
    18. ASTM D1761-12 (2012). Standard Test Methods for Mechanical Fasteners in Wood. West Conshohocken, USA: ASTM International.
    19. Blaß, H., & Schädle, P. (2011). Ductility aspects of reinforced and non-reinforced timber joints. Engineering Structures, 33(11), 3018-3026. doi: 10.1016/j.engstruct.2011.02.001
    20. Gutknecht, M.P. (2017). PARALLEL-TO-GRAIN WITHDRAWAL RESISTANCE OF STRUCTURAL SELF-TAPPING SCREWS IN CANADIAN TIMBER (the degree of Master of Applied Science). Queen’s University.
    21. Hübner, U.,M. Rasser and G.Schickhofer. (2010). Withdrawal capacity of screws in European ash (Fraxinus excelsior L.). WCTE 2010 World Conference on Timber Engineering, Riva del Garda, Italy. 8 pp.
    22. Kasal, B., Heiduschke, A., Kadla, J., & Haller, P. (2004). Laminated timber frames with composite fibre-reinforced connections. Progress In Structural Engineering And Materials, 6(2), 84-93. doi: 10.1002/pse.173
    23. Lin, H., Tsai, M., & Sugiharto Wonodihardjo, A. (2018). Withdrawal Resistance and Failure Mode of Semi-Circular Wooden Composite with Different Fasteners. Key Engineering Materials, 765, 295-299. doi: 10.4028/www.scientific.net/kem.765.295
    24. Pirnbacher, G., Brandner, R., & Schickhofer, G. (2009). Base parameters of self-tapping screws. CIB-W18 42-7-1, Dubendorf, Swithzerland: Publisher 16 p.
    25. Polastri, A., Angeli, A. (2014). An innovative connection system for CLT structures: ex-perimental-numerical analysis. 2014 World Conference on Timber Engineering, Quebac, Canada. 8 p.
    26. Ribeiro, M. L., Del Menezzi, C. H. S., Siqueira, M.L., de Melo, R. R. (2018). Effect of wood density and screw length on the withdrawal resistance of tropical wood, Nativa, Sinop, v.6,n.4, p. 402-406.
    27. Wang, M., Song, X., Gu, X., Zhang, Y., & Luo, L. (2015). Rotational Behavior of Bolted Beam-to-Column Connections with Locally Cross-Laminated Glulam. Journal Of Structural Engineering, 141(4), 04014121. doi: 10.1061/(ASCE)st.1943-541x.0001035
    28. Zhang, C., Guo, H., Jung, K., Harris, R., & Chang, W. (2019). Using self-tapping screw to reinforce dowel-type connection in a timber portal frame. Engineering Structures, 178, 656-664. doi: 10.1016/j.engstruct.2018.10.066

    下載圖示 校內:2023-09-30公開
    校外:2023-09-30公開
    QR CODE