簡易檢索 / 詳目顯示

研究生: 蔣維凡
Chiang, Wei-Fan
論文名稱: 口腔癌腫瘤侵犯前緣與其鄰近間質組織Galectin-1表現與臨床腫瘤侵襲性之關係解析
Increased expression of galectin-1 at the invasion front and tumor-associated stroma as clinical aggressiveness of oral cancer
指導教授: 陳玉玲
Chen, Yuh-Ling
靳應臺
Jin, Ying-Tai
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 70
中文關鍵詞: 口腔癌腫瘤微環境腫瘤鄰近間質組織侵犯前緣galectin-1
外文關鍵詞: oral cancer, galectin-1, invasion front, tumor-associated stroma, tumor microenvironment
相關次數: 點閱:172下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔鱗狀上皮細胞癌是世界上常見的癌症之一,癌細胞轉移在癌症發展的過程中屬於最致命的一步,一般而言,此時腫瘤在原發部位相對地常是呈現極大尺寸,然而更令人正視的問題是腫瘤轉移可能源自於一個小尺寸的原發腫瘤,因此如何早期診斷出罹患這類高侵犯性癌症之病患成了治療上重要的一步,除了臨床醫師常用之臨床病理特徵外,可能得闡明有關癌細胞轉移的詳細機轉以得致更多之相關分子標記。在我們初步針對臨床樣本所做的研究中發現galectin-1為淋巴轉移相關的蛋白質之一,galectin-1屬於galectin家族中的原型,已經發現有多項與腫瘤生物學相關之重要的功能,包括細胞凋亡與細胞增生的調控、細胞移動相關之黏著力、血管新生和免疫的調節等等。從許多其他腫瘤研究中顯示在腫瘤侵犯前緣與其鄰近間質組織galectin-1表現與臨床上腫瘤侵襲性有明顯正相關,在本研究中使用8例正常口腔黏膜上皮、10例口腔上皮內腫瘤、64例原發口腔鱗狀上皮細胞癌及其中17例轉移至頸部淋巴之鱗狀上皮細胞癌等等,分別以免疫組織化學染色法及定量即時連鎖聚合脢反應進行其蛋白質與轉錄體分析,結果發現侵犯前緣之腫瘤細胞質中galectin-1蛋白之過度表現則在早期癌化及腫瘤轉移時期皆具有明顯正相關,而腫瘤鄰近間質組織中galectin-1蛋白之過度表現則只在早期癌化時期中有明顯正相關。但在定量即時連鎖聚合脢反應分析中卻看不到轉錄子明顯之正相關;但透過鐳射輔助顯微切割與定量即時連鎖聚合脢反應分析,分別來看腫瘤上皮與鄰近間質組織中galectin-1轉錄子表現可得致與蛋白質表現相似之結果。Kaplan-Meier存活分析及Cox’s proportional hazards model進行單一變項分析可知在早期T分期的36位病患中,若是同時表現galectin-1 蛋白及轉錄子會有明顯較差之預後情形。總而言之,我們以口腔鱗狀上皮細胞癌之臨床檢體為模型,發現在腫瘤細胞質及鄰近間質組織的galectin-1蛋白過度表現與早期癌化過程皆有顯著相關性,而在腫瘤轉移階段則以腫瘤細胞為主。本研究將有助於闡明在鄰近間質組織及位於侵犯前緣之腫瘤細胞的微環境中,galectin-1蛋白在口腔癌化過程中依不同時期和不同位置的過度表現將扮演不同之功能,這將在我們進一步探討中提供強而有力的支持證據。

    Oral squamous cell carcinoma (OSCC) is one of the most common neoplasms worldwide. Metastasis is a final and fatal step in the progression of OSCC and always accompanies with a large primary tumor. However, metastasis may occur in a small primary tumor and progresses rapidly. Therefore, early diagnosis is important for this subgroup. In addition to clinicopathological parameters, we have to study molecular mechanisms of cancer metastasis to find the applicable biomarkers. In our preliminary studies, galectin-1 has been proved to be one of significant up-regulated tumor-associated proteins via the proteomics analysis in OSCC tissues. Galectin-1, a prototype of the galectin family, has been shown to play important functions in several aspects of cancer biology, including modulation of cell apoptosis, proliferation, migration and adhesion, angiogenesis and immune modulation. Aggressive behavior correlated with the increased at the invasion front and the tumor-associated stroma has been demonstrated in many types of neoplasms. To determine the clinical significance of galectin-1, its expression at this specific microenvironment was analyzed in various stages of oral tumorigenesis. Immunohistochemical analysis of galectin-1 expression in 8 normal oral mucosa tissues (NOMTs), 10 oral intraepithelial neoplasms (OIEDs), 64 primary OSCCs and 17 metastatic carcinoma lesions was carries out and corroborated by RT-qPCR. Galectin-1 protein was significantly overexpressed at the tumor-associated stroma as well as the invasion front during early oral carcinogenesis (P<0.05). During the metastatic stage, the only one present significant immunoreactivity was the tumor invasion front (P<0.05). Although, there was no any significance galectin-1 mRNA upregulation in cancerous tissue in comparison to adjacent NOMT, the significant upregulated galectin-1 in stromal tissue during early-staged OSCC and in epithelial tissue at the metastatic stage, which were taken from the laser-assisted microdissected cancerous tissue. Kaplan-Meier survival analysis as well as univariated analysis using the Cox’s proportional hazards model showed that co-expression of galectin-1 protein and mRNA correlated with worse disease-specific survival in early T-staged OSCC (P=0.024 and P=0.047, respectively). Overall, the results suggest that galectin-1 upregulation at the invasion front and tumor-associated stroma plays important roles in oral carcinogenesis at two important stages: early carcinogenesis and regional lymph node metastasis. The pathogenetic roles of galectin-1 in oral tumorigenesis deserve further investigation.

    CONTENTS 中文摘要 A English abstract C Acknowledgements E Table contents I Figure contents J Abbreviations K Introduction Clinical parameters for oral squamous cell carcinoma (OSCC) 1 Histolopathological parameters of OSCC 2 Molecular diagnosis for OSCC 3 The role of galectin-1 in tumor biology 4 The aim of this study and strategies 5 Materials and methods Tissue samples 7 Immunohistochemical analysis 8 Laser microdissection (LMD) and RNA extraction 9 Whole tissue RNA extraction 10 Reverse Transcription (RT) 11 Real-Time PCR (qPCR) quantitation 11 Survival and statistical analysis 13 Results Clinicopathological characteristics 15 Immunohistochemical analysis 15 RT-qPCR analysis 16 Comparison of galectin-1 mRNA expression levels as quantified by LMD-RT-qPCR and its corresponding protein expression by IHC 17 Survival analysis of the 64 OSCC patients 17 Survival analysis of the 36 early T-staged OSCC patients 18 Discussion Strategies for management of oral carcinogenesis 19 Intracellular galectin-1 involves in tumor transformation 20 Galectin-1 in microenvironment in association to tumor progression 22 Galectin-1 and tumor metastasis 26 Effect on cell adhesion 26 Regulation of tumor motility 27 Regulation of tumor angiogenesis 28 Evasion of immune surveillance 28 Post-transcription or translation regulation of galectin-1 expression 31 The location of galectin-1 expression and disease prognosis 32 Conclusion 34 References 35 Tables 51 Figures 56 Curriculum vitae 68

    REFERENCES
    Alge CS, Priglinger SG, Kook D, et al. Galectin-1 influences migration of
    retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2006; 47: 415-426.
    Balkwill F. Cancer and the chemokine network. Nature Rev Cancer 2004; 4:
    540−550.
    Bankfalvi A, Pifko J. Prognostic and predictive actors in oral cancer: the
    role of the invasive tumor front. J Oral Pathol Med 2000; 29: 291-298.
    Barondes SH, Castronovo V, Cooper DN, et al. Galectins: a family of animal -
    galactoside-binding lectins. Cell 1994; 76: 597−598.
    Berberat PO, Friess H, Wang L, et al. Comparative analysis of galectins in
    primary tumors and tumor metastasis in human pancreatic cancer. J Histochem
    Cytochem 2001; 49: 539-549.
    Bettendorf O, Piffko J, Bankfalvi A. Prognostic and predictive factors in oral
    squamous cell cancer: important tools for planning individual therapy? Oral
    Oncol 2004; 40: 110-119.
    Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation
    and progression. Nature 2004; 432: 332-337.
    Blaser C, Kaufmann M, Muller C, et al. Beta-galactoside binding protein
    secreted by activated T cells inhibits antigen-induced proliferation of T
    cells. Eur J Immunol 1998; 28: 2311−2319.
    Bouquot JE, Gorlin RJ. Leukoplakia, lichen planus, and other oral keratoses in
    23,616 white American over the age of 35 years. Oral Surg Oral Med Oral
    Pathol Oral Radiol Endod 1986; 1: 373-381.
    Bouquot JE, Ephros H. Erythroplakia: the dangerous red mucosa. Pract Periodont
    Aesthet Dent 1995; 7: 59-67.
    Brewer CF. Binding and cross-linking properties of galectins. Biochim Biophys
    Acta 2002; 1572: 255−262.
    Bryne M, Boysen M, Alfsen CG, et al. The invasive front of carcinomas. The
    most important area for tumor prognosis? Anticancer Res 1998a; 18: 4757-4764.
    Bryne M. Is the invasive front of an oral carcinoma the most important area
    for prognostication? Oral Dis 1998b; 4: 70-77.
    Bundgard T, Bentzen SM, Wildt J. The prognostic effect of tobacco and alcohol
    consumption in intra-oral squamous cell carcinoma. Oral Oncol Eur J Cancer
    1994; 30B: 323-328.
    Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer
    treatment by molecularly targeting the tumor microenvironment. Mol Cancer
    Res. 2006; 4: 61-70.
    Camby I, Belot N, Lefranc F, et al. Galectin-1 modulates human gioblastoma
    cell migration into the brain through modifications to the actin cytoskeleton
    and levels of expression of small GTPases. J Neuropathol Exp Neurol 2002; 61:
    585-596.
    Chang KW, Sarraj S, Lin SC, Tsai PI, Solt D. p53 expression, p53 and Ha-ras
    mutation and telomerase activation during nitrosamine-mediated hamster pouch
    carcinogenesis. Carcinogenesis 2000; 21: 1441-1451.
    Chen J, He QY, Yuen AP, Chiu JF. Proteomics of buccal squamous cell carcinoma:
    the involvement of multiple pathways in tumorigenesis. Proteomics 2004; 4:
    2465-2475.
    Chiang WF, Yen CY, Lin CN, et al. Up-regulation of a serine-threonine kinase
    proto-oncogene Pim-1 in oral squamous cell carcinoma. Int J Oral Maxillofac
    Surg 2006; 35: 740-745.
    Choufani G, Nagy N, Saussez S, Marchant H, Bisschop P, Burchert M, et al. The
    level of expression of galectin-1, galectin-3, and the Thomsen-Friedenreich
    antigen and their binding sites decrease as clinical aggressiveness increases
    in head and neck cancers. Cancer 1999; 86: 2353-2363.
    Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC. Galectin-1 induces partial
    TCR -chain phosphorylation and antagonizes processive TCR signal
    transduction. J Immunol 2000; 165: 3722−3729.
    Cindolo L, Benvenuto G, Salvatore P, et al. Galectin-1 and galectin-3
    expression in human bladder transitional-cell carcinomas. Int J Cancer 1999;
    84: 39-43.
    Clausse N, van der Brule F, Waltregny D, Garnier F, Castronovo V. Galectin-1
    expression in prostate tumor-associated capillary endothelial cells is
    increased by prostate carcinoma cells and modulates heterotypic cell-cell
    adhesion. Angiogenesis 1999; 3: 317-325.
    Cooper DNW, Barondes SH. Evidence for export of a muscle lectin from cytosol
    to extracellular matrix and for a novel secretary mechanism. J Cell Biol
    1990; 110: 1681-1691.
    Cooper DNW. Galectinomics: finding themes in complexity. Biochim Biophys Acta
    2002; 1572: 209−231.
    Coussens LM, Werb Z., Inflammation and cancer. Nature 2002; 420: 860–867.
    Danguy A, Camby I, Kiss R. Galectins and cancer. Biochim Biophys Acta 2002;
    1572: 285−293.
    Dias-Baruffi M, Zhu H, Cho M, Karmakar S, McEver RP, Cummings RD. Dimeric
    galectin-1 induces surface exposure of phosphatidylserine and phagocytic
    recognition of leukocytes without inducing apoptosis. J Biol Chem 2003; 278:
    41282−41293.
    Downward J. Targeting RAS signaling pathways in cancer therapy. Nature Rev
    Cancer 2003; 3: 11-22.
    Duesberg P, Rausch C, Rasnick D, Hehlmann R. Genetic instbility of cancer
    cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci USA
    1998: 95: 13692-13697.
    Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance
    and immunoediting. Immunity 2004; 21: 137−148.
    Dvorankova B, Smetana K Jr, Chovanec M, et al. Transient expression of keratin
    19 is induced in originally negative interfollicular epidermal cells by
    adhesion of suspended cells. Int J of Mol Med 2005; 16: 525-531.
    Elad-Sfadia G, Haklai R, Ballan E, Gabius HJ, Kloog Y. Galectin-1 augments Ras
    activation and diverts Ras signals to Raf-1 at the expense of
    phosphoinositide 3-kinase. J Biol Chem 2002; 277: 37169−37175.
    Elad-Sfadia G, Haklai R, Ballan E, Kloog Y. Galectin-3 augments K-Ras
    activation and triggers a Ras signal that attenuates ERK but not
    phosphoinositide 3-kinase activity. J Biol Chem 2004; 279: 34922−34930.
    Ellerhorst J, Nguyen T, Cooper DN, Lotan D, Lotan R. Differential expression
    of endogenous galectin-1 and galectin-3 in human prostate cancer cell lines
    and effects of overexpressing galectin-1 on cell phenotype. Int J Oncol
    1999a; 14: 217−224.
    Ellerhorst J, Troncoso P, Xu XC, Lee J, Lotan R. Galectin-1 and Galectin-3
    expression in human prostate tissue and prostate cancer. Urol Res 1999b; 27:
    362-367.
    Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol
    2002; 29: 15−18.
    Forastiere A, Koch W, Trotti A, et al. Head and neck cancer. N Engl J Med
    2001; 345: 1890-1900.
    Gabrilovich D, Pisarev V. Tumor escape from immune response: mechanisms and
    targets of activity. Curr Drug Targets 2003; 4: 525−536.
    Galvan M, Tsuboi S, Fukuda M, Baum LG. Expression of a specific
    glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J
    Biol Chem 2000; 275: 16730−16737.
    Gillenwater A, Xu XC, Estrov Y, Sacks PG, Lotan D, Lotan R. Modulation of
    galectin-1 content in human head and neck suamous carcinoma cells by sodium
    butyrate. Int J Cancer 1998; 75: 217-224.
    Goldring K, Jones GE, Watt DJ. The muscle-spcific marker desmin is expressed
    in a proportion of human dermal fibroblasts after their exposure to
    galectin-1. Neuromuscul Disord 2002; 12: 183-186.
    Greenspan D, Jordan RC. The white lesison that kills—aneuploid dysplastic
    oral leukoplakia. N Engl J Med 2004; 350: 1382-1384.
    Gu M, Wang W, Song WK, Cooper DNW, Kaufman SJ. Selective modulation of the
    interaction of 71 integrin with fibronectin and laminin by L-14 lectin
    during skeletal muscle differentiation. J Cell Sci 1994; 107:175−181.
    Hahn HP, Pang M, He J, et al. Galectin-1 induces nuclear translocation of
    endonuclease G in caspase- and cytochrome c-independent T cell death. Cell
    Death Differ 2004; 11: 1277−1286.
    He J, Baum LG. Presentation of galectin-1 by extracellular matrix triggers T
    cell death. J Bio Chem 2004; 279: 4705−4712.
    Hittelet A, Legendre H, Nagy N, Bronckart Y, Pector JC, Salmon I, et al.
    Upredulation of galectin-1 and -3 in human colon cancer and their role in
    regulating cell migration. Int J Cancer 2003; 103: 370-379.
    Honjo Y, Nangia-Makker P, Inohara H, Raz A. Down-regulation of galectin-3
    suppresses tumorigenicity of human breast carcinoma cells. Clin Cancer Res
    2001; 7: 661−668.
    Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nature
    Rev Cancer 2002; 2: 91−100.
    Hughes RC. Galectins as modulators of cell adhesion. Biochimie 2001; 83:
    667−676.
    Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell.
    2005; 7: 513-520.
    Kowalski LP, Medina JE. Nodal metastases: predictive factors. Otolaryngol Clin
    North Am 1998; 31: 621-37.
    Kukuda M. Cell surface glycoconjugates as onco-differentiation markers in
    hematopoetic cells. Biochim Biophys Acta 1985; 780:119-150.
    Kuwabara I, Sano H, Liu FT. Functions of galectins in cell adhesion and
    chemotaxis. Methods Enzymol 2003; 363: 532−552.
    La M, Cao TV, Cerchiaro G, et al. A novel biological activity for galectin-1:
    inhibition of leukocyte-endothelial cell interactions in experimental
    inflammation. Am. J. Pathol 2003; 163: 1505−1515.
    Layland MK, Sessions DG, Lenox J. The influence of lymph node metastasis in
    the treatment of squamous cell carcinoma of the oral cavity, oropharynx,
    larynx, and hypopharynx: N0 versus N+. Laryngoscope 2005; 115: 629-639.
    Le Marer N, Hughes RC. Effects of the carbohydrate-binding protein galectin-3
    on the invasiveness of human breast carcinoma cells. J Cell Physiol 1996;
    168: 51−58.
    Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY, et al. Galectin-1: A link
    between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005; 23: 8932-
    8941.
    Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F. Introduction to
    galectins. Glycoconj J 2004; 19: 433−440.
    Lewis MP, Lygoe KA, Nystrom ML, et al. Tumor-derived TGF-β1 modulates
    myofibroblast differentiation and promotes HGF/SF-dependent invasion of
    squamous carcinoma cells. Br J Cancer 2004; 90: 822-832.
    Levy Y, Arbel-Goren R, Hadari YR, et al. Galectin-8 functions as a
    matricellular modulator of cell adhesion. J Biol Chem 2001; 276: 31285−31295.
    Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim
    Biophys Acta 2002; 1572: 263−273.
    Lu Y, Lotan D, Lotan R. Differential regulation of constitutive and retinoic
    acid-induced galectin-1 gene transcription in murine embryonal carcinoma and
    myoblastic cells. Biochim Biophys Acta 2000; 1491: 13−19.
    Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-B in cancer
    cells converts inflammation-induced tumor growth mediated by TNF to TRAIL-
    mediated tumor regression. Cancer Cell 2004; 6: 297−305.
    Mignogna MD, Fedele S, Russo LL. The World Cancer Report and the burden of
    oral cancer. Eur J Cancer Prev 2004; 13: 139-142.
    Moiseeva EP, Spring EL, Baron JH, de Bono DP. Galectin-1 modulates attachment,
    spreading and migration of cultured vascular smooth muscle cells via
    interactions with cellular receptors and components of extracellular matrix.
    J Vasc Res 1999; 36: 47-58.
    Moiseeva EP, Javed Q, Spring EL, de Bono DP. Galectin-1 is involved in
    vascular smooth muscle cell proliferation. Cardiovasc Res 2000; 45: 493-502.
    Moiseeva EP, Williams B, Goodall AH, Samani NJ. Galectin-1 interacts with -1
    subunit of integrin. Biochim Biophys Res Communi 2003; 310: 1010−1016.
    Nemeth Z, Velich N, Bogdan S, Ujpal M, Szabo G, Suba ZS. The prognostic role
    of clinical, morphological and molecular markers in oral squamous cell
    tumors. Neoplasma 2005; 52: 95-102.
    Ochieng J, Leite-Browning ML, Warfield P. Regulation of cellular adhesion to
    extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun
    1998a; 246: 788−791.
    Ochieng J, Green B, Evans S, James O, Warfield P. Modulation of the biological
    functions of galectin-3 by matrix metalloproteinases. Biochim Biophys Acta
    1998b; 1379: 97−106.
    Ochieng J, Furtak V, Lukyanov P. Extracellular functions of galectin-3.
    Glycoconj J 2004; 19: 527−535.
    O'Driscoll L, Linehan R, Liang YH, Joyce H, Oglesby I, Clynes M. Galectin-3
    expression alters adhesion, motility and invasion in a lung cell line(DLKP),
    in vitro. Anticancer Res 2002; 22: 3117−3125.
    O'Donnell RK, Kupferman M, Wei SJ, et al. Gene expression signature predicts
    lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene
    2005; 24: 1244-51.
    Pace KE, Lee C, Stewart PL, Baum LG. Restricted receptor segregation into
    membrane microdomains occurs on human T cells during apoptosis induced by
    galectin-1. J Immunol 1999; 163: 3801−3811.
    Paleri V, Rees G, Arullendran P, Shoaib T, Krishman S. Sentinel node biopsy in
    squamous cell cancer of the oral cavity and oral pharynx: a diagnostic meta-
    analysis. Head Neck 2005; 27: 739-747.
    Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev
    Immunol 2003; 21: 807−839.
    Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden:
    Globocan 2000. Int J Cancer 2001; 94: 153-156.
    Paterson IC, Eveson JW, Prime SS. Molecular changes in oral cancer may reflect
    aetiology and ethnic origin. Eur J Cancer Part B, Oral Oncol 1996; 32B: 150-
    153.
    Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y. Galectin-1 binds oncogenic
    H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene
    2001; 20: 7486−7493.
    Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by
    galectin-1. Nature 1995; 378, 736−739.
    Pollard JW. Tumour-educated macrophages promote tumour progression and
    metastasis. Nature Rev Cancer 2004; 4: 71−78.
    Prieto I, Prieto A, Bravo M, Bascones A. Prognostic factors for cancer of the
    oral cavity. Quintessence Int 2005; 36: 711-719.
    Rabinovich GA, Iglesias MM, Modesti NM, et al. Activated rat macrophages
    produce a galectin-1-like protein that induces apoptosis of T cells:
    biochemical and functional characterization. J Immunol 1998; 160: 4831−4840.
    Rabinovich GA, Ariel A, Hershkoviz R, Hirabayashi J, Kasai KI, Lider O.
    Specific inhibition of T-cell adhesion to extracellular matrix and
    proinflammatory cytokine secretion by human recombinant galectin-1.
    Immunology 1999; 97: 100−106.
    Rabinovich GA, Alonso CR, Sotomayor CE, Durand S, Bocco JL, Riera CM.
    Molecular mechanisms implicated in galectin-1-induced apoptosis: activation
    of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death
    Differ 2000a; 7: 747−753.
    Rabinovich GA, Sotomayor CE, Riera CM, Bianco I, Correa SG. Evidence of a role
    for galectin-1 in acute inflammation. Eur J Immunol 2000b; 30: 1331−1339.
    Rabinovich GA, Rubinstein N, Matar P, Rozados V, Gervasoni S, Scharovsky GO.
    The antimetastatic effect of a single low dose of cyclophosphamide involves
    modulation of galectin-1 and Bcl-2 expression. Cancer Immunol Immunother
    2002a; 50: 597−603.
    Rabinovich GA, Ramhorst RE, Rubinstein N, et al. Induction of allogenic T-cell
    hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic
    mechanisms. Cell Death Differ 2002b; 9: 661−670.
    Reith A, Sudbo J. Impact of genomic instablility in risk assessment and
    chemoprevention of oral premalignancies. Int J Cancer 2002; 101: 205-259.
    Sanjuan X, Fernandez PL, Castells A, et al. Differential expression of
    galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology
    1997; 113: 1906-1915.
    Sawyers C. Targeted cancer therapy. Nature 2004; 432: 294-297.
    Silverman SJ, Gorsky M, Lozada F. Oral leukoplakia and malignant
    transformation. A follow-up study of 257 patients. Cancer 1984; 53: 563-568.
    Shimanishi T, Miyazaki K, Kono N, Sabit H, Tuneyama K, Harada K, et al.
    Expression of endogeneous galectin-1 and galectin-3 in intrahepatic
    cholangiocarcinoma. Hum Pathol 2001; 32: 302-310.
    Sûdbo J, Kildal W, Risberg B, Koppang HS, Danielsen HE, Reith A. DNA content
    as a prognostic marker in patients with oral leukoplakia. N Engl J Med 2001a;
    344: 1270-1278.
    Sûdbo J, Ried T, Bryne M, Kildal W, Danielsen HE, Reith A. Abnormal DNA
    content predicts the occurence of carcinomas in non-dysplatic oral white
    patches. Oral Oncol 2001b; 37: 558-565.
    Szoke T, Kayser K, Baumhakel JD, Trojan I, Furak J, Tiszlavicz L, et al.
    Prognostic significance of endongenous adhesion/growth-regulatory lectins in
    lung cancer. Oncology 2005; 69: 167-174.
    Takenaka Y, Inohara H, Yoshii T, et al. Malignant transformation of thyroid
    follicular cells by galectin-3. Cancer Lett 2003; 195: 111−119.
    Toruner GA, Ulger C, Alkan M, Galante AT, Rinaggio J, Wilk R, et al.
    Association between gene expression profile and tumor invasion in oral
    squamous cell carcinoma. Cancer Genet Cytogenet 2004; 154: 27-35.
    Vakkila J and Lotze MT. Inflammation and necrosis promote tumor growth. Nat
    Rev Immunol 2004; 4: 641-648.
    van den Brekel MW, Snow GB. Assessment of lymph node metastases in the neck.
    Eur J of Cancer Part B, Oral Oncol 1994; 30B: 88-92.
    van den Brûle FA, Waltregny D, Castronovo V. Increased expression of galectin-
    1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma
    patients. J Pathol 2001; 193: 80-7.
    van den Brûle FA, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo
    V. Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is
    induced by ovary carcinoma cells and affects both cancer cell proliferation
    and adhesion to laminin-1 and fibronectin. Lab Invest 2003; 83: 377-86.
    Vokes EE, Weichselbaum RR, Lippman SM, et al. Head and neck cancer. N Engl J
    Med 1993; 328: 184-194.
    Walzel H, Blach M, Hirabayashi J, Kasai K, Brock J. Involvement of CD2 and CD3
    in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology 2000;
    10: 131−140.
    Weiss MH, Harrison LB, Isaacs RS. Use of decision analysis in planning and
    management strategy for the stage N0 neck. Arch Otolaryngol Head Neck Surg
    1994; 120: 699-702.
    WHO collaborating center for oral precancerous lesions. Definition of
    leukoplakia and related lesions: an aid to studies on oral precancer. Oral
    Surg Oral Med Oral Pathol Oral Radiol Endod 1978; 46: 518-539.
    Xi S, Grandis JR. Gene therapy for the treatment of oral squamous cell
    carcinoma.J Dent Res 2003; 82: 11-16.
    Yamaoka K, Mishima K, Nagashima Y, Asai A, Sanai Y, Kirino T. et al.
    Expression of galectin-1 mRNA correlates with the malignant potential of
    human gliomas and expression of antisense galectin-1 inhibits the growth of 9
    glioma cells. J Neurosci Res 2000; 59: 722−730.
    Yoshii T, Inohara H, Takenaka Y, et al. Galectin-3 maintains the transformed
    phenotype of thyroid papillary carcinoma cells. Int J Oncol 2001; 18:
    787−792.
    Yuan B, Heniford BW, Ackermann DM, Hawkins BL, Hendler FJ. Harvey ras (H-ras)
    point mutations are induced by 4-nitroquinoline-1-oxide in murine oral
    squamous epithelia, while squamous cell carcinomas and loss of heterozygosity
    occur without additional exposure. Cancer Res 1994; 54: 5310-5317.
    Zienolddiny S, Aguelon AM, Mironov N, et al. Genomic instability in oral
    squamous cell carcinoma: relationship to betel-quid chewing. Oral Oncol 2004;
    40: 298-303.

    下載圖示 校內:2008-07-26公開
    校外:2009-07-26公開
    QR CODE