| 研究生: |
賴金鴻 Lau, Chin-Hung |
|---|---|
| 論文名稱: |
非對稱C型複合材料樑之等效剛性分析 Analysis of Equivalent Stiffness in Asymmetric C-Shaped Laminated Composite Beam |
| 指導教授: |
梁育瑞
Liang, Yu-Jui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 複合材料 、非對稱C型 、結構梁 、加強筋 、等效剛性 、非對稱疊層 、有限元素模型 、Ansys Workbench |
| 外文關鍵詞: | laminated composites beam, asymmetric C shape, equivalent stiffness, asymmetric stacking sequences, finite element method |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種新穎的方法,用於分析非對稱C型複合材料梁,無論是在對稱或非對稱的疊層順序情況下。該方法利用經典層合理論(Classical Lamination Theory)來修改,結合重心和剪切中心概念,推導出非對稱C型複合材料梁之截面性質的明確表達式,包括軸向(Axial)、彎曲(Bending)、扭轉(Torsional)和翹曲剛性(Warping Stiffness)。過程中進行一連串的假設與優化,其中最重要的假設莫過於考慮在結構梁中觀察到獨特的變形行為,而這些假設都建立在彈性變形之下。為了驗證該解析解的準確性,將此結果與三維有限元分析進行比較。在驗證軸向和彎曲剛性之後,搭配驗證軸向應力確認建模正確後,再驗證扭轉和翹曲剛性。這項研究還將參數進行調整,包括各種斷面尺寸、梁的長度和疊層角度,探討與驗證在各種變化之下,等效剛性的影響與準確性。另外,在極端疊層順序情況下,探討此方法與不考慮結構斷面效應之間的比較。同時,比較優化前與優化後的差異。這個新穎的方法能夠加速對非對稱C型複合材料梁的等效剛性評估,與初步設計階段的實際應用具有重要的相關性。
A novel methodology for the analysis of asymmetric C-shaped laminated composite beams is proposed in this work. Moreover, the proposed approach leverages an adapted Classical Lamination Theory (CLT) with centroid and shear center concepts to derive explicit expressions for the evaluation of crucial sectional properties, including axial, bending, torsional, and warping stiffness. The analytical formulations account for the distinctive deformation characteristics observed in structural beams. To validate the accuracy of the proposed analytical expressions, three-dimensional finite element analyses are performed for comparisons between analytical and numerical results. The solutions for axial and bending stiffness are examined, along with torsional and warping stiffness. Parametric studies are conducted, including various cross-sectional dimensions, the length of the beam, and the stacking sequences of the composite laminates. This study investigates the comparisons between the proposed methodology and the methodology that does not consider the effect of the structural cross-section. Additionally, a comprehensive analysis of the methodology is conducted for both symmetric and asymmetric stacking sequences in this research. This novel approach expedites the assessment of the behavior of laminated composite beams and holds significant relevance for practical applications in the preliminary design phase.
1. Singh, S., A novel stress analysis method for laminated composite stiffener with asymmetric Z-section under mechanical and thermal loading conditions. 2016.
2. Lu, W., S. Singh, and W. Chan, A novel stress analysis method for composite Z-stiffeners under mechanical and thermal loads. Journal of Composite Materials, 2019. 53(26-27): p. 3807-3818.
3. Chan, W. and K. Syed, Determination of Centroid and Shear Center Locations of Composite Box Beams. The University of Texas at Arlington, Arlington, Texas, USA.
4. Quilter, A., Composites in aerospace applications. IHS White Paper, 2001. 444(1): p. 264.
5. Evrard, D. and F. Alonso, FAST (Flight Airworthiness Support Technology)–Special Edition A350XWB. Airbus Technical Magazine, US, 2013.
6. Nair, S., Mechanics of Aero-structures. 2015: Cambridge university press.
7. Truong, V.-H., et al., Failure load analysis of C-shaped composite beams using a cohesive zone model. Composite Structures, 2018. 184: p. 581-590.
8. Kalanchiam, M. and M. Chinnasamy, Advantages of composite materials in aircraft structures. International Journal of Aerospace and Mechanical Engineering, 2012. 6(11): p. 2428-2432.
9. Mou, H., J. Xie, and Z. Feng, Research status and future development of crashworthiness of civil aircraft fuselage structures: An overview. Progress in Aerospace Sciences, 2020. 119(100644).
10. Megson, T.H.G., Aircraft structures for engineering students. 1999.
11. Pilkey, W.D. and K. Kevent, Notes on the linear analysis of thin-walled beams. University of Virginia, 1996.
12. Lin, W.Y. and K.M. Hsiao, More general expression for the torsional warping of a thin-walled open-section beam. International journal of mechanical sciences, 2003. 45(5): p. 831-849.
13. Pluzsik, A. and L.P. Kollar, Effects of shear deformation and restrained warping on the displacements of composite beams. Journal of reinforced plastics and composites, 2002. 21(17): p. 1517-1541.
14. Kaw, A.K., Mechanics of composite materials. 2005: CRC press.
15. Tsai, C.-L., I. Daniel, and G. Yaniv, Torsional response of rectangular composite laminates. 1990: p. 383-387.
16. Shadmehri, F., B. Derisi, and S. Hoa, On bending stiffness of composite tubes. Composite structures, 2011. 93(9): p. 2173-2179.
17. Cardoso, J.B. and A.J. Valido, Cross-section optimal design of composite laminated thin-walled beams. Computers & structures, 2011.
18. Qiu, J., Equivalent stiffness calculation of composite hat stiffened laminate. Vibroengineering Procedia, 2022. 47: p. 42-48.
19. Elghazaly, A.E.A., et al., Structural analysis of composite laminated box-beams under various types of loading. International Journal of Engineering Research & Technology (IJERT), 2014.
20. LeBoulluec, P.L., ANALYSIS OF COMPOSITE BEAMS WITH AIRFOIL CROSS-SECTIONS WITH I-SECTION STIFFENER UNDER TENSION AND BI-DIRECTIONAL MOMENTS. 2019.
21. Sanghavi, V.M.S., Torsional Analysis of a Composite I-beam. 2013.
22. Kora, M.M., Analysis of a composite beam with unsymmetrical C crossection. 2015: The University of Texas at Arlington.
23. Hwu, C., Anisotropic elasticity with Matlab. 2021: Springer.
24. Piping-Designer.com. TORSION CONSTANT FOR RECTANGLE CROSS-SECTION. 2019; Available from: https://www.piping-designer.com/index.php/properties/classical-mechanics/2648-torsion-constant-for-rectangle-cross-section.
25. Rajagopalan, K., Torsion of Thin-Walled Structures, in Torsion of Thin Walled Structures. 2022, Springer.
26. Ungureanu, P.V. TORSION OF MEMBERS. 2019; Available from: https://docplayer.net/152395413-Torsion-of-members-prof-viorel-ungureanu.html.
27. Way, A. and T. Cosgrove, Design of Steel Beams in Torsion. SCI (The Steel Constr Institute): Berkshire, UK, 2011.
28. Boresi, A.P. and R.J. Schmidt, Advanced mechanics of materials. 2002: John Wiley & Sons.
29. Muttulingam, M.S. Composites modeling with ANSYS. 2011; Available from: https://reurl.cc/zlbDYk.
30. ans_help_v182. 5.2. Shell Elements. 2018; Available from: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_ShellElements.html.
31. ÖZGÜN. Mesh Methods and Element Types in ANSYS Workbench. 2022; Available from: Mesh Methods and Element Types in ANSYS Workbench.
32. peteroznewman. Meshing with Shell181. 2020; Available from: https://forum.ansys.com/forums/topic/meshing-with-shell181/.
33. Bachmann, J., C. Hidalgo, and S. Bricout, Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review. Science China Technological Sciences, 2017.
34. featips.com. MPC Contacts in ANSYS – Yes or No? 2022; Available from: https://featips.com/2022/10/08/mpc-contacts-in-ansys-yes-or-no/.
35. featips.com. Understanding Remote Points in Ansys Workbench. 2023; Available from: https://featips.com/2023/10/02/understanding-remote-points-in-ansys-workbench/.
校內:2029-01-29公開