簡易檢索 / 詳目顯示

研究生: 廖千涵
Liao, Chien-Han
論文名稱: 在無線感測網路中具有選擇追蹤模組策略的多種追蹤模組追蹤架構
Multi-Model based Object Tracking Architecture with Model Selection Strategies for Wireless Sensor Network
指導教授: 李強
Lee, Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 53
中文關鍵詞: object trackingMMOTAsensor network
外文關鍵詞: MMOTA, object tracking, sensor network
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線感測網路應用中 (如軍隊監控和野生動物習性監控),追蹤技術扮演一個相當重要的角色。目前大多的追蹤方法都是基於一種移動模組在預測物體未來的位置,並喚醒預測位置附近的感測器定期監控物體。但是,這樣的追蹤系統並無法有效的長時間追蹤物體。因為在現實生活的應用中,一個物體通常都不會長時間使用同一種移動方式在移動。因此要正確地表示物體的移動軌跡,往往都需要多種的移動模組,而非使用單一種移動模組就能夠完整表示物體的移動軌跡。目前只使用單一種移動模組的追蹤方法,將會很容易發生偵測不到物體的狀況,因而需要消耗更多的能源找回遺失的物體。在這一篇論文裡,我們提供了一個追蹤平台,稱之為 Multi-Model based Object Tracking Architecture (MMOTA),用省能源的方式長時間追蹤物體。MMOTA 的基本想法就是在追蹤過程中,針對不同的狀況,動態從多個預先設計好的追蹤方法中選出最省能源的追蹤方式,並利用選擇的追蹤方式追蹤物體。接下來,我們開發一個 Monitoring-Cost Evaluator,衡量未被使用的追蹤方法的追蹤成本。並設計三個追蹤方法的選擇策略,包含有Greedy Strategy、 Min-Max Strategy 和 Weighted Moving Average Strategy,選出最有效率的追蹤方法給 MMOTA 追蹤物體。最後,我們模擬一組多樣性的實驗,比較 MMOTA 和目前的追蹤系統的追蹤效能,以及衡量三個所提出的選擇追蹤模組策略。實驗結果顯示,和目前的追蹤系統比較起來,MMOTA 可以消耗相當少能源追蹤物體,甚至可以節省超過 50.7% 的能源。

    The tracking techniques play a significant role in wireless sensor network applications, such as troops monitoring and wildlife habitat monitoring. The methodology of recently proposed tracking schemes predicts the object location in the future based on a moving model, and then activate nearby sensors to monitor the target periodically. However, existing tracking systems cannot effectively track targets for a long time. This is because in most real-world applications, a target frequently or occasionally moves with different patterns, and accurately predicting the movement of a target needs multiple moving models, instead of a single model. Thus, the existing schemes frequently incur target loss, and a great amount of energy is consumed to find back the target. In this thesis, we propose a tracking framework, called Multi-Model based Objet Tracking Architecture (MMOTA), to energy-efficiently track a moving target. MMOTA can dynamically select the best tracking modules to monitor the target among the multiple predesigned tracking modules in different situations. Next, we derive a Monitoring-Cost Evaluator to evaluate the monitoring cost for the inactive tracking modules, and then design three tracking module selection strategies, including Greedy Strategy, Min-Max Strategy, and Weighted Moving Average Strategy, to select the most effectively tracking module for monitoring the target. Finally, we conduct a set of comprehensive experiments to compare MMOTA against the existing tracking systems and evaluate the three proposed tracking module selection strategies. The result shows that MMOTA consumes the much less energy for monitoring the target than the existing tracking systems, and saves more than 50.7% amount of energy for monitoring the target.

    摘 要 V Abstract VI Acknowledgement VII Tables of Contents VIII List of Figures IX List of Tables X List of Algorithms XI Chapter 1 Introduction...1 Chapter 2 Related Work...5 Chapter 3 System Model...8 3.1 Sensor Network...8 3.2 Generic Tracking System...8 Chapter 4 Multi-Model based Object Tracking Architecture (MMOTA)...12 Chapter 5 Best Tracking Module Selection Strategies for BTM Selector...18 5.1 Monitoring-Cost Evaluation...18 5.2 Greedy Strategy...24 5.3 Min-Max Strategy...26 5.4 Weighted Moving Average Strategy...28 Chapter 6 Performance Evaluation...32 6.1 Simulation Model...32 6.2 Performance Evaluation for MMOTA...33 6.3 Performance of Monitoring-Cost Evaluation...35 6.4 Comparisons between Three Proposed BTM Selection Strategies...38 6.5 Impact of Size of Surveillance Window lsw...40 Chapter 7 Conclusion...42 Appendices...43 Appendix A...44 Reference...48

    [ASS+02] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A Survey on Sensor Networks. IEEE Communications Magazine, 40(8):102-114, August 2002.
    [BLY+04] Sung-Hoon Byun, Han-Jin Lee, Hyeon-Kyu Yoon, Do-Sig Gong, Chang-Min Lee and Chang-Gu Kang. Implementation of Multi-Vessel Tracking Algorithm using Multiple Marine Radar Systems. In Proceedings of IEEE TECHNO-OCEAN, vol. 4, pages 2242-2248, 2004.
    [CBD02] Tracy Camp, Jeff Boleng, and Vanessa Davies. A Survey of Mobility Models for Ad Hoc Network Research. Wireless Communications and Mobile Computing (WCMC’02), 2(5):483-502, August 2002.
    [CC05] Chao-Chun Chen and Yu-Chi Chung. Tracking Irregularly Moving Objects based on Alert-enabling Sensor Model in Sensor Networks. In Proceedings of the 11th International Conference on Parallel and Distributed Systems (ICPADS’05), volume 01, page 571- 577, July 2005.
    [CEE+01] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton, and Jerry Zhao. Habitat Monitoring: Application Driver for Wireless Communications Technology. In Proceedings of the 1st ACM SIGCOMM Workshop Data Communications, pages 20-41, April 2001.
    [CES04] David Culler, Deborah Estrin, and Mani Srivastava. Overview of Sensor Networks. IEEE Computer, 37(8):41-49, August 2004.
    [CLH+05] Tzung-Shi Chen, Wen-Hwa Liao, Ming-De Huang, and Hua-Wen Tsai. Dynamic Object Tracking in Wireless Sensor Networks. In Proceedings of the 13th IEEE International Conference on Networks (ICON’05), volume 1, page 475-480, November, 2005.
    [CMG+06] Jidong Chen, Xiaofeng Meng, Yanyan Guo, Stephane Grumbach, and Hui Sun. Modeling and Predicting Future Trajectories of Moving Objects in a Constrained Network. In Proceedings of the 7th International Conference on Mobile Data Management (MDM’06), page 156, May 2006.
    [CS99] Jonathan Chan and Aruna Seneviratne. A Practical User Mobility Algorithm for Supporting Adaptive QoS in Wireless Networks. In Proceedings of IEEE International Conference on Networks (ICON’99), pages 104-111, 1999.
    [F03] Fritz Bekkadal. Novel Radar Technology and Applications. In Proceedings of the 17th International Conference on Applied Electromagnetics and Communications (ICECom’03), pages 6-12, October, 2003.
    [GD06] Hamid Ghadaki and Reza Dizaji. Target Track Classification For Airport Surveillance Radar (ASR). In Proceedings of IEEE Conference on Radar, April 2006.
    [GI01] Samir Goel and Tomasz Imielinski. Prediction-based Monitoring in Sensor Networks: Taking Lessons from MPEG. ACM Computer Communication, 31(5):82-98, October 2001.
    [HB01] Jeffrey Hightower and Gaetano Borriello. Location Systems for Ubiquitous Computing. In IEEE Computer Magazine, 34(8):57-66, August 2001.
    [HE04] Lingxuan Hu and David Evans. Localization for mobile sensor networks. In Proceedings of the 10th annual international conference on Mobile computing and networking (MobiComm’04), pages 45-57, September 2004
    [JH07] Inwhee Joe and Sungchan Hong. A Mobility-based Prediction Algorithm for Vertical Handover in Hybrid Wireless Networks. In Proceedings of the 2nd IEEE/IFIP International Workshop on Broadband Convergence Networks, pages 1-5, May 2007.
    [LBC98] Tong Liu, Paramvir Bahl, and Imrich Chlamtac. Mobility Modeling, Location Tracking, and Trajectory Prediction in Wireless ATM Networks. IEEE Journal on Selected Areas in Communications, 16(6):922-936, August 1998.
    [LL06] Adrian Lin and Hao Ling. Two-dimensional human tracking using a three-element Doppler and direction-of-arrival (DDOA) radar. In Proceedings of IEEE Conference on Radar, April 2006.
    [LXZ+02] Dik Lun Lee, Jianliang Xu, Baihua Zheng, and Wang-Chien Lee. Data Management in Location-Dependent Information Services. IEEE Pervasive Computing, 1(3):65-72, July 2002.
    [PKL06] Wen-Chih Peng, Yu-Zen Ko, and Wang-Chien Lee. On Mining Moving Patterns for Object Tracking Sensor Networks. In Proceedings of the 7th International Conference on Mobile Data Management (MDM’06), pages: 41-44, May 2006.
    [RL05] Zainab R. Zaidi and Brian L. Mark. Real-Time Mobility Tracking Algorithms for Cellular Networks Based on Kalman Filtering. IEEE Transactions on Mobile Computing, 4(2): 195-208, March 2005.
    [RSP+02] Vijay Raghunathan, Curt Schurgers, Sung Park, and Mani B. Srivastava. Energy-Aware Wireless Microsensor Networks. IEEE Signal Processing Magazine, 19(2):40-50, March 2002.
    [SS06] Duncan Smith and Sameer Singh. Approaches to Multisensor Data Fusion in Target Tracking: A Survey. IEEE Transactions on Knowledge and Data Engineering, 18(12):1696-1710, December 2006.
    [SLL+06] Winston K.G. Seah, Kevin Z. Liu, J. G. Lim, S.V. Rao, and Marcelo H. Ang, Jr.. TARANTULAS: Mobility-enhanced Wireless Sensor-Actuator Networks. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06), volume 1, pages: 548-551, June 2006.
    [TKL+03] Yu-Chee Tseng, Sheng-Po Kuo, Hung-Wei Lee, and Chi-Fu Huang. Location Tracking in a Wireless Sensor Network by Mobile Agents and Its Data Fusion Strategies. In Proceedings of the 2nd International Conference on Information Processing in Sensor Networks (IPSN’03), pages 625-641, April 2003.
    [Tmote] Tmote Sky (Ultra low power IEEE 802.15.4 compliant wireless sensor module) datasheet, http://wsnsolution.bandwavetech.com/download/- tmote-sky-datasheet.pdf.
    [TL07] Vincent Shin-Mu Tseng and Kawuu Weicheng Lin. Energy Efficient Strategies for Object Tracking in Sensor Networks: A Data Mining Approach. Journal of Systems and Software, 80(10):1678-1698, October 2007.
    [WCC+07] Shan-Hung Wu, Kun-Ta Chuang, Chung-Min Chen, and Ming-Syan Chen. DIKNN: An Itinerary-based KNN Query Processing Algorithm for Mobile Sensor Networks. In Proceedings of IEEE 23rd International Conference on Data Engineering (ICDE’07), pages 456-465, April 2007.
    [XL03] Yingqi Xu and Wang-Chien Lee. On Localized Prediction for Power Efficient Object Tracking in Sensor Networks. In Proceedings of the 23rd International Conference on Distributed Computing Systems, pages 434-439, May 2003.
    [XL06] Yingqi Xu and Wang-Chien Lee. DTTC: Delay-Tolerant Trajectory Compression for Object Tracking Sensor Networks. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06), pages 436-445, June 2006.
    [XL07] Yingqi Xu and Wang-Chien Lee. Compressing Moving Object Trajectory in Wireless Sensor Networks. International Journal of Distributed Sensor Networks (IJDSN’07), 3(2):151-174, April 2007.
    [XTL05] Jianliang Xu, Xueyan Tang, and Wang-Chien Lee. EASE: An Energy-Efficient In-Network Storage Scheme for Object Tracking in Sensor Networks. In Proceedings of IEEE Sensor and Ad Hoc Communications and Networks (SECON’05), pages 396-405, September 2005.
    [XWL04a] Yingqi Xu, Julian Winter, and Wang-Chien Lee. Prediction-based Strategies for Energy Saving in Object Tracking Sensor Networks. In Proceedings of IEEE International Conference on Mobile Data Management (MDM’04), pages 346-357, January 2004.
    [XWL04b] Yingqi Xu, Julian Winter, and Wang-Chien Lee. Dual Prediction-based Reporting for Object Tracking Sensor Networks. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04), pages 154-163, August 2004.
    [YFR06] Lizhi Yang, Chuan Feng, Jerzy W. Rozenblit, and Haiyan Qiao. Adaptive Tracking in Distributed Wireless Sensor Networks. In Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06), pages 103-111, 2006.
    [YTL06a] Yuxia Yao, Xueyan Tang, and Ee-Peng Lim. Continuous Monitoring of kNN Queries in Wireless Sensor Networks. In Proceedings of the 2nd International Conference on Mobile Ad-hoc Sensor Networks, pages 662-673, December 2006.
    [YTL06b] Yuxia Yao, Xueyan Tang, and Ee-Peng Lim. In-network processing of nearest neighbor queries for wireless sensor networks. In Proceedings of the 11th International Conference on Database Systems for Advanced Applications (DASFAA’06), pages 35-49, April 2006.
    [ZC04] Wensheng Zhang and Guohong Cao. DCTC: Dynamic Convoy Tree-Based Collaboration for Target Tracking in Sensor Networks. IEEE Transactions on Wireless Communications, 3(5): 1689-1701, September 2004.
    [ZSG+01] Lizhi Charlie Zhong, Rahul Shah, Chunlong Guo, and Jan Rabaey. An Ultra-Low Power and Distributed Access Protocol for Broadband Wireless Sensor Networks. In IEEE Broadband Wireless Summit, Las Vegas, N.V., May 2001.

    下載圖示 校內:立即公開
    校外:2008-07-29公開
    QR CODE