簡易檢索 / 詳目顯示

研究生: 葉冠伶
Yeh, Kuan-Ling
論文名稱: 流量分配對生成雙重包覆液滴之影響
The Effect of the Flow Ratio towards the Generation of Double Emulsion Droplets
指導教授: 李定智
Lee, Denz
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 112
中文關鍵詞: 三維交錯維管道雙重包覆
外文關鍵詞: Three-dimensional crossing microchannel, Double emulsion
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電系統(Micro-Electro-Mechanical System, MEMS)包含了感測、致動或處理的功能,利用微機電技術可以將整個實驗流程,例如:檢微機電系統(Micro-Electro-Mechanical System, MEMS)包含了感測、致動或處理的功能,利用微機電技術可以將整個實驗流程,例如:檢測、配置及混合等過程濃縮在一個微小的晶片上,其具有體積小、檢測樣品量少、實驗時間短、自動化操作以及可拋棄等多項優點。
    本研究團隊近幾年來特別在三維微管道上作深入的研究,此研究期望提供學術界理論探討的實質幫助,進而實際應用在產業界,對微流道研究上有所貢獻。
    先前本研究團隊利用簡單的T字型管結合十字型管設計出一管道,且已成功地在管道中產生雙重包覆之液滴,並依照其生成趨勢劃分為三個區域,穩定區意即在此流量搭配下可產生穩定且完整的油包水之雙重包覆液滴,其實用性以及價值性是較高的,因此本研究著重於穩定區的實驗與分析,為了使穩定區範圍拉大,將原先某三個注入口受制於同一幫浦流量限制,新增一幫浦單獨調控其一注入流量,對於成功形成雙重包覆液滴將是有利的,並探討新獨立出來的注入口流量,以及對於油滴和水滴尺寸做參數測試,進而可透過注入流量的分配影響液滴的尺寸。

    Stable region was defined as “the generation of stable and whole water-in-
    oil-in-water double-emulsion droplet via appropriate flow rates”, and had
    the highest applicability and value. Therefore, this study focused on the
    experiment and analysis of stable region. The limitation of original design
    was that the flow rates through three filler holes were controlled by the
    same pump. In order to extend the range of stable region, the addition of
    another pump for controlling one injection flow rate could benefit the
    successful generation of double-emulsion droplet. Parameter measurements
    were performed for analyzing the effect of new independent flow rate
    through the filler hole on the sizes of oil droplet and water droplet, and then the size of droplet could be controlled via the adjustment of flow rates through the filler holes.

    目錄 中文摘要……………………………………………………………………...I Extended Abstract……….……………………………………………..….III 致謝……………………………………………………………………….....IX 目錄……………………………………………………………...…………...X 表目錄………………………………..…….………………………….......XIV 圖目錄…...………………………………….………………………….......XV 符號索引………………………………………………………………XVIII 第一章 緒論 22 1.1 前言 22 1.2 研究動機 24 1.3 研究目的 25 1.4 文獻回顧 26 1.4.1單一液滴的生成與其機制 26 1.4.2生成雙重包覆之液滴 28 第二章 基礎理論與微管道設計 29 2.1 流體在微管道中的流動特性 29 2.1.1雷諾數(Reynolds number) 29 2.1.2流體之模型介紹 31 2.1.3微管道流場中之壁面效應 33 2.1.4其他力量之影響說明 35 2.2 理論基礎 35 2.2.1流體阻力之影響 35 2.2.2毛細數(Capillary number) 36 2.2.3流體聚焦 37 2.2.4液滴受力之介紹 38 2.3 微流道型式之設計 39 2.3.1產生液滴之管道型式 39 2.3.2產生雙重包覆之管道型式 40 第三章 實驗方法與步驟 42 3.1 黃光微影製程 42 3.1.1母模製作 42 3.1.2 PDMS管道製作 49 3.1.3管道接合 50 3.2 實驗系統架構 51 3.2.1實驗設備與配置 51 3.2.2實驗方法 52 3.2.3實驗操作流程 53 3.2.4工作流體的配置與介面活性劑的選擇 55 3.2.5液滴生成的尺寸測量 56 第四章 結果與討論 57 4.1 W3之值與各參數關係 57 4.1.1 O在雙重包覆中與W3之關係 58 4.1.2 W1在雙重包覆中與W3之關係 59 4.1.3 W2在雙重包覆中與W3之關係 60 4.2 雙重包覆中影響油滴尺寸之參數探討 61 4.2.1 O在雙重包覆中對於油滴尺寸之影響 61 4.2.2 W1在雙重包覆中對於油滴尺寸之影響 62 4.2.3 W2在雙重包覆中對於油滴尺寸之影響 63 4.3 雙重包覆中影響水滴尺寸之參數探討 64 4.3.1 O在雙重包覆中對於水滴尺寸之影響 64 4.3.2 W1在雙重包覆中對於水滴尺寸之影響 65 4.3.3 W2在雙重包覆中對於水滴尺寸之影響 66 4.4 雙重包覆中影響油水徑比(do/dw)之參數探討 67 4.4.1 O在雙重包覆中對於油水徑比(do/dw)之影響 67 4.4.2 W1在雙重包覆中對於油水徑比(do/dw)之影響 68 4.4.3 W2在雙重包覆中對於油水徑比(do/dw)之影響 69 4.5 探討實驗誤差之原因 70 第五章 結論 71 5.1 總結 71 5.2 未來展望 73 參考文獻 74

    [1] R. P. Feynman, There's plenty of room at the bottom. Engineering and science, 1959.
    [2] M. S. Talary, J. P. H. Burt and R. Pethig, Future trends in diagnosis using laboratory-on-a-chip technologies. Parasitology, 117, 191-203, 1999.
    [3] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R.Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, An integrated nanoliter DNA analysis device. Science, 282, 484-487, 1998.
    [4] W. Wang, Z. X. Li, R. Luo, S. H. Lu, A. D. Xu and Y. J. Yang, Droplet-based micro oscillating-flow PCR chip. Journal of Micromechanics and Microengineering, 15, 1369-1377, 2005.
    [5] B. Zheng, J. D. Tice and R. F. Ismagilov, Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Analytical chemistry, 76, 4977-4982, 2004.
    [6] 張智堯, 三維十字型微管道之液滴生成研究. 成功大學航空太空工程學系學位論文, 2012
    [7] S. van der Graaf, M. L. J. Steegmans, R. G. M. van der Sman, C. G. P. H. Schroen, R. M. Boom, Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsificatio. Colloids and Surfaces A, 106-116, 2005.
    [8] J. Tan, J. H. Xu, S. W. Li and G. S. Luo, Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up. Chemical Engineering Journal, 136, 306-311, 2008.
    [9] H. Liu, Y. H. Zhang, Droplet formation in a T-shaped microfluidic junction, Journal of Applied Physics, 106, 034906, 2009.
    [10] 黃明輝, 三維十字型微管道之液滴生成研究. 成功大學航空太空工程學系學位論文, 2012.
    [11] Y. H. Lin, C. H. Lee and G. B. Lee, Droplet Formation Utilizing Controllable Moving-Wall Structures for Double-Emulsion Applications. Journal of Microelectromechanical Systems, 17, 3, 2008.
    [12] 陳景堯, 利用三維交錯微管道生成油滴與雙重包覆液滴之研究. 成功大學航空太空工程學系學位論文, 2012.
    [13] H. C. Berg and E. M. Purcell, The physics of chemoreception. Biophysical Journal, 20, 193-219, 1997.
    [14] O. Reynolds, An experimental investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels. Philosophical Transactions of the Royal Society of London, 174, 1883.
    [15] X. F. Peng, G. P. Peterson and B. X. Wang, Frictional flow characteristics of water flowing through rectangular microchannels. Experimental Heat Transfer, 7, 249-264 1994.
    [16] Hak, The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture. Journal of Fluid Engineering, 121, 1999.
    [17] P. Wu and W. A. Little, Measurement of friction factors for the flow of gases in very fine channels used for micro miniature Joule-Thomson refrigerators. Cryogenics, 23, 273-277, 1983.
    [18] F. M. White, Viscous Fluid Flow. Vol. 3. McGraw. Hill, New York, 2006
    [19] S. L. Anna, N. Bontoux and H. A. Stone, Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 82, 364, 2003.
    [20] C. C. Chang, Z. X. Huang and R. J. Yang, Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. Journal of Micromechanics and Microengineering, 17, 1479-1486, 2007.
    [21] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up. Lab on a Chip, 6, 437-446, 2006.
    [22] W. Kern, D. A. Poutinen, Cleaning Solutions Based on Hydrogen Peroxide for Use in Semiconductor Technology. RCA review, 187-190, 1970.

    無法下載圖示 校內:2019-01-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE