| 研究生: |
張哲維 Chang, Jer-Wei |
|---|---|
| 論文名稱: |
有機五環素場效電晶體負型傳導轉換機制之探討 The study of n-type characteristics in pentacene-based organic field-effect transistors |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 五環素 、有機場效電晶體 、雙載子特性 、負型傳導 |
| 外文關鍵詞: | pentacene, organic field-effect transistors, ambipolar, n-type conduction |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文專注於探討有機五環素場效電晶體其負型(n-type)傳導之運作機制,分別由載子傳導與載子注入兩方面討論負型操作的必要成因及限制。
在負型載子傳導方面,比較poly(vinyl alcohol) (PVA)、poly (4-vinyl phenol) (PVP)與polystyrene (PS)介電層的五環素場效電晶體其負型元件特性,其中只有PVP介電層的五環素場效電晶體不具負型傳導特性。實驗證實PVP上的羥基(-OH)會補捉電子,但是在PVA上的羥基(-OH)卻不會。兩者間最大的差異是氫離子解離常數(proton dissociation constant)。PVP的羥基(-OH)具高解離常數,屬弱酸性,而PVA羥基(-OH)具低解離常數,屬中性。因此,介電層羥基(-OH)的解離常數才是決定是否解離出氫離子及負型場效通道形成的條件。
在負型載子注入方面,釐清鋁電極有機五環素場效電晶體經過24小時後,電洞流下降低於起初的1/100,由雙載子(ambipolar)傳導轉變成負型載子傳導。經多項實驗證實鋁與五環素接觸面間發生界面反應,此反應後的界面會阻礙電洞。並採用鋁與五環素的混蒸鍍薄膜來深入研究其界面特性。混蒸鍍薄膜由吸收光譜得知能隙增加了約1.3 eV,及紫外光電子能譜(UPS)觀察到其最高佔有分子軌道(HOMO)的能帶下移。此結果解釋了,原本雙載子(ambipolar)傳導的五環素場效電晶體轉變成負型載子傳導是因為鋁與五環素界面上產生了電洞阻擋層其HOMO下移了1.3 eV。
由載子傳導及載子注入來考量,挑選PS當介電層及鋁當電極,經製程最佳化後,所製作的負型五環素場效電晶體的載子移動率可以達到0.1 cm2/V/s。
This thesis focuses on the n-type characteristics in pentacene-based organic field-effect transistors (OFETs) from the viewpoints of charge transport and charge injection respectively.
In the study of carrier transport, in comparison of poly(vinyl alcohol) (PVA), poly(4-vinyl phenol) (PVP) and polystyrene (PS) as the dielectric in pentacene-based OFETs, only PVP dielectric lacks n-type conduction characteristics. The experiments confirm that the hydroxyl groups on the PVP capture electrons, but the hydroxyl groups on PVA do not. The biggest difference of hydroxyl groups on PVP and on PVA is the proton dissociation constant, because PVP has a high dissociation constant. Therefore, the dissociation constant of hydroxyl groups determines the hydrogen ion dissociation and the electron channel formation.
In the study of carrier injection, the hole currents in ambipolar pentacene-based OFETs with aluminum (Al) electrodes are decreased by the magnitude of two orders in 24 hours, and the pentacene-based OFETs become n-type. The interfacial reaction of Al and pentacene causes the hole currents decreased. By UV-visible absorption spectroscopy and ultraviolet photoelectron spectroscopy (UPS), the band gap of the co-evaporated films of Al and pentacene is extended by 1.3 eV, and the states in the highest occupied molecular orbital (HOMO) region are shifted downward. This result explains the ambipolar pentacene-based OFETs of Al electrodes perform n-type output characteristic because a hole blocking layer with the HOMO lower than 1.3 eV is produced in the interface of Al and pentacene.
In the consideration of charge transport and charge injection, PS as the dielectric layer and Al as electrodes are chosen for n-type pentacene-based OFETs in which the field-effect electron mobility is up to 0.1 cm2/ V / s.
Reference
[1] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521.
[2] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature 2007, 445, 745.
[3] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
[4] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett. 1997, 18, 606.
[5] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Trans. Electron Devices 1997, 44, 1325.
[6] T. B. Singh, F. Meghdadi, S. Günes, N. Marjanović, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, Adv. Mater. 2005, 17, 2315.
[7] C.-Y. Yang, Dhananjay, S.-S. Cheng, C.-W. Ou, Y.-C. Chuang, M.-C. Wu, C.-W. Chu, Appl. Phys. Lett. 2008, 92, 253307.
[8] C.-Y. Yang, S.-S. Cheng, C.-W. Ou, Y.-C. Chuang, M.-C. Wu, Dhananjay, C.-W. Chu, J. Appl. Phys. 2008, 103, 094519.
[9] M. Ahles, R. Schmechel, H. von Seggern, Appl. Phys. Lett. 2004, 85, 4499.
[10] T.-F. Guo, Z.-J. Tsai, S.-Y. Chen, T.-C. Wen, C.-T. Chung, J. Appl. Phys. 2007, 101, 124505.
[11] J.-W. Chang, W.-L. Hsu, C.-Y. Wu, T.-F. Guo, T.-C. Wen, Org. Electron. 2010, 11, 1613.
[12] M. Ahles, R. Schmechel, H. von Seggern, Appl. Phys. Lett. 2005, 87, 113505.
[13] N. Benson, M. Schidleja, C. Melzer, R. Schmechel, H. von Seggern, Appl. Phys. Lett. 2006, 89, 182105.
[14] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, G. Horowitz, Appl. Phys. Lett. 2006, 89, 033512.
[15] T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. Montaigne Ramil, H. Sitter, M. Cölle, D. M. de Leeuw, Appl. Phys. Lett. 2006, 89, 213504.
[16] T. D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P. W. M. Blom, D. M. de Leeuw, Adv. Mater. 2006, 18, 1900.
[17] A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Phys. Rev. Lett. 2003, 91, 157406.
[18] J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, H. Sirringhaus, Adv. Mater. 2006, 18, 2708.
[19] L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194.
[20] T. Yasuda, T. Goto, K. Fujita, T. Tsutsui, Appl. Phys. Lett. 2004, 85, 2098.
[21] C. K. Chiang, C. R. Fincher, Y. W. P. Jr., A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
[22] P. I. Djurovich, E. I. Mayo, S. R. Forrest, M. E. Thompson, Org. Electron. 2009, 10, 515.
[23] A. Völkel, R. Street, D. Knipp, Phys. Rev. B 2002, 66, 195336.
[24] D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, Phys. Rev. Lett. 2004, 93, 086802.
[25] D. Guo, T. Miyadera, S. Ikeda, T. Shimada, K. Saiki, J. Appl. Phys. 2007, 102, 023706.
[26] W. Kalb, F. Meier, K. Mattenberger, B. Batlogg, Phys. Rev. B 2007, 76, 184112.
[27] W. Kalb, S. Haas, K. Pernstich, T. Mathis, B. Batlogg, in APS March Meeting 2010, APS March Meeting 2010.
[28] J. Hirsch, J. Phys. C: Solid State Phys. 1979, 12, 321.
[29] L. Li, G. Meller, H. Kosina, Microelectron. J. 2007, 38, 47.
[30] D. R. Lenski, A. Southard, M. S. Fuhrer, Appl. Phys. Lett. 2009, 94, 232103.
[31] N. F. Mott, E. A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford 1971.
[32] G. Horowitz, R. Hajlaoui, P. Delannoy, J. de Physique III 1995, 5, 355.
[33] G. Horowitz, Adv. Mater. 1998, 10, 365.
[34] A. Facchetti, M.-H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705.
[35] G. Horowitz, Adv. Polym. Sci. 2010, 223, 113.
[36] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
[37] T. B. Singh, N. S. Sariciftci, Ann. Rev. Mater. Res. 2006, 36, 199.
[38] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
[39] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 2006, 444, 913.
[40] H. Klauk, M. Halik, U. Zschieschang, G. n. Schmid, W. Radlik, W. Weber, J. Appl. Phys. 2002, 92, 5259.
[41] J. Zhang, J. P. Rabe, N. Koch, Adv. Mater. 2008, 20, 3254.
[42] S. Liu, W. M. Wang, A. L. Briseno, S. C. B. Mannsfeld, Z. Bao, Adv. Mater. 2009, 21, 1217.
[43] T. Toccoli, A. Pallaoro, N. Coppedè, S. Iannotta, F. De Angelis, L. Mariucci, G. Fortunato, Appl. Phys. Lett. 2006, 88, 132106.
[44] P. Ribič, V. Kalihari, C. Frisbie, G. Bratina, Phys. Rev. B 2009, 80, 115307.
[45] H. S. Lee, D. H. Kim, J. H. Cho, Y. D. Park, J. S. Kim, K. Cho, Adv. Funct. Mater. 2006, 16, 1859.
[46] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Inc., Hoboken, New Jersey 2007.
[47] W. R. Salaneck, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 1997, 355, 789.
[48] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 1999, 11, 605.
[49] P. G. Schroeder, C. B. France, J. B. Park, B. A. Parkinson, J. Appl. Phys. 2002, 91, 3010.
[50] S. Kang, Y. Yi, C. Kim, S. Cho, M. Noh, K. Jeong, C. Whang, Synth. Met. 2006, 156, 32.
[51] M. Popinciuc, H. T. Jonkman, B. J. van Wees, J. Appl. Phys. 2006, 100, 093714.
[52] S. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 2009, 21, 1450.
[53] H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, N. Ueno, Phys. Rev. B 2006, 73, 245310.
[54] N. J. Watkins, Y. Gao, J. Appl. Phys. 2003, 94, 1289.
[55] T. Schwieger, X. Liu, D. Olligs, M. Knupfer, T. Schmidt, J. Appl. Phys. 2004, 96, 5596.
[56] F. Zheng, B.-N. Park, S. Seo, P. G. Evans, F. J. Himpsel, J. Chem. Phys. 2007, 126, 154702.
[57] W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, Y. S. Wu, Langmuir 2005, 21, 2260.
[58] A. Brillante, R. G. D. Valle, L. Farina, A. Girlando, M. Masino, E. Venuti, Chem. Phys. Lett. 2002, 357, 32.
[59] R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc, A. Ron, Appl. Phys. Lett. 2004, 84, 987.
[60] Farina, L., Chem. Phys. Lett. 2003, 375, 490.
[61] Y. Hosoi, D. M. Deyra, K. Nakajima, Y. Furukawa, Mol. Cryst. Liquid Cryst. 2008, 491, 317.
[62] F. D. Angelis, G. Das, E. D. Fabrizio, Chem. Phys. Lett. 2008, 462, 234.
[63] M. Cazayous, A. Sacuto, G. Horowitz, P. Lang, A. Zimmers, R. Lobo, Phys. Rev. B 2004, 70, 081309.
[64] H.-L. Cheng, X.-W. Liang, W.-Y. Chou, Y.-S. Mai, C.-Y. Yang, L.-R. Chang, F.-C. Tang, Org. Electron. 2009, 10, 289.
[65] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, F. -C. Tang, Y.-W. Wang, Appl. Phys. Lett. 2006, 88, 161918.
[66] B. A. Paez S, Proc. of SPIE 2005, 59400F.
[67] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, Y.-W. Wang, Y.-S. Mai, F.-C. Tang, S.-W. Chu, Adv. Funct. Mater. 2008, 18, 285.
[68] S. Berkebile, P. Puschnig, G. Koller, M. Oehzelt, F. Netzer, C. Ambrosch-Draxl, M. Ramsey, Phys. Rev. B 2008, 77, 115312.
[69] C. C. Mattheus, G. A. de Wijs, R. A. de Groot, T. T. M. Palstra, J. Am. Chem. Soc. 2003, 125, 6323.
[70] A. Troisi, G. Orlandi, J. Phys. Chem. B 2005, 109, 1849.
[71] Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil, J. L. Brédas, J. Chem. Phys. 2003, 118, 3764.
[72] K. Hummer, C. Ambrosch-Draxl, Phys. Rev. B 2005, 72, 205205.
[73] J. Cornil, J. L. Brédas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 2007, 19, 1791.
[74] H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
[75] S. Yin, Y. Lv, Org. Electron. 2008, 9, 852.
[76] R. Schmechel, M. Ahles, H. von Seggern, J. Appl. Phys. 2005, 98, 084511.
[77] J. H. Schön, C. Kloc, Appl. Phys. Lett. 2001, 79, 4043.
[78] M. Schidleja, C. Melzer, H. von Seggern, Appl. Phys. Lett. 2009, 94, 123307.
[79] M. Schidleja, C. Melzer, M. Roth, T. Schwalm, C. Gawrisch, M. Rehahn, H. von Seggern, Appl. Phys. Lett. 2009, 95, 113303.
[80] A. Dodabalapur, L. Torsi, H. E. Katz, Science 1995, 268, 270.
[81] H. Sirringhaus, Science 2000, 290, 2123.
[82] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 2002, 81, 268.
[83] V. Y. Butko, X. Chi, D. V. Lang, A. P. Ramirez, Appl. Phys. Lett. 2003, 83, 4773.
[84] J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, B. Batlogg, J. Appl. Phys. 2003, 94, 5800.
[85] O. D. Jurchescu, J. Baas, T. T. M. Palstra, Appl. Phys. Lett. 2005, 87, 052102.
[86] R. He, X. Chi, A. Pinczuk, D. V. Lang, A. P. Ramirez, Appl. Phys. Lett. 2005, 87, 211117.
[87] R. A. Street, D. Knipp, A. R. Völkel, Appl. Phys. Lett. 2002, 80, 1658.
[88] D. Knipp, R. A. Street, A. R. Völkel, Appl. Phys. Lett. 2003, 82, 3907.
[89] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, C.-H. Chang, J. Appl. Phys. 2004, 95, 2293.
[90] M. C. J. M. Vissenberg, M. Matters, Phys. Rev. B 1998, 57, 12964.
[91] S. Pratontep, M. Brinkmann, F. Nüesch, L. Zuppiroli, Phys. Rev. B 2004, 69, 165201.
[92] S. Pratontep, F. Nüesch, L. Zuppiroli, M. Brinkmann, Phys. Rev. B 2005, 72, 085211.
[93] B. Stadlober, U. Haas, H. Maresch, A. Haase, Phys. Rev. B 2006, 74, 165302.
[94] C. Kim, A. Facchetti, T. J. Marks, Science 2007, 318, 76.
[95] A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett. 2005, 86, 263501.
[96] S. D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, K. Tsukagoshi, Appl. Phys. Lett. 2008, 93, 043311.
[97] S. Y. Yang, K. Shin, C. E. Park, Adv. Funct. Mater. 2005, 15, 1806.
[98] M.-H. Yoon, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 12851.
[99] E. Orgiu, S. Locci, B. Fraboni, E. Scavetta, P. Lugli, A. Bonfiglio, Org. Electron. 2011, 12, 477.
[100] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, Appl. Phys. Lett. 2005, 87, 243512.
[101] M. Tello, M. Chiesa, C. M. Duffy, H. Sirringhaus, Adv. Funct. Mater. 2008, 18, 3907.
[102] T. Minari, T. Nemoto, S. Isoda, J. Appl. Phys. 2006, 99, 034506.
[103] F. Garnier, G. Horowitz, X. Peng, D. Fishou, Adv. Mater. 1990, 2, 592.
[104] D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, S. Im, Adv. Mater. 2006, 18, 2299.
[105] C. Kim, A. Facchetti, T. J. Marks, Adv. Mater. 2007, 19, 2561.
[106] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, D. Y. Kim, Adv. Mater. 2006, 18, 3179.
[107] W. H. Lee, J. A. Lim, D. Kwak, J. H. Cho, H. S. Lee, H. H. Choi, K. Cho, Adv. Mater. 2009, 21, 4243.
[108] T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736.
[109] W. L. Kalb, T. Mathis, S. Haas, A. F. Stassen, B. Batlogg, Appl. Phys. Lett. 2007, 90, 092104.
[110] K. Fukuda, T. Sekitani, T. Someya, Appl. Phys. Lett. 2009, 95, 023302.
[111] W.-Y. Chou, H.-L. Cheng, Adv. Funct. Mater. 2004, 14, 811.
[112] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Appl. Phys. Lett. 2004, 84, 3789.
[113] H.-C. Lin, C.-F. Wang, S.-W. Kuo, P.-H. Tung, C.-F. Huang, C.-H. Lin, F.-C. Chang, J. Phys. Chem. B 2007, 111, 3404.
[114] O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380.
[115] E. V. Anslyn, D. A. Dougherty, Modern physical organic chemistry, University Science, Sausalito, California 2006.
[116] T. G. Backlund, R. Osterbacka, H. Stubb, J. Bobacka, A. Ivaska, J. Appl. Phys. 2006, 98, 074504.
[117] C. Eaborn, W. A. Stańczyk, J. Chem. Soc. Perkin Trans. 2 1984, 11, 2099.
[118] A. D. Gunzbourg, J.-C. Favier, P. Hémery, Polym. Int. 1994, 35, 179.
[119] C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, Adv. Funct. Mater. 2007, 17, 958.
[120] T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Someya, T. Sakurai, Appl. Phys. Lett. 2005, 87, 073505.
[121] D. Guo, S. Ikeda, K. Saiki, H. Miyazoe, K. Terashima, J. Appl. Phys. 2006, 99, 094502.
[122] T. Takenobu, K. Watanabe, Y. Yomogida, H. Shimotani, Y. Iwasa, Appl. Phys. Lett. 2008, 93, 073301.
[123] S. Luan, G. W. Neudeck, J. Appl. Phys. 1992, 72, 766.
[124] J. Zaumseil, K. W. Baldwin, J. A. Rogers, J. Appl. Phys. 2003, 93, 6117.
[125] P. V. Necliudov, M. S. Shur, D. J. Gundlach, T. N. Jackson, Solid-State Electron. 2003, 47, 259.
[126] C. Reese, Z. Bao, Adv. Funct. Mater. 2009, 19, 763.
[127] C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 2005, 87, 193508.
[128] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 1997, 70, 152.
[129] I. D. Parker, J. Appl. Phys. 1994, 75, 1656
[130] R. H. Fowler, L. Nordheim, Proc. R. Soc. London 1928, 119, 173.
[131] M. Alagia, C. Baldacchini, M. G. Betti, F. Bussolotti, V. Carravetta, U. Ekström, C. Mariani, S. Stranges, J. Chem. Phys. 2005, 122, 124305.
[132] H. Ozaki, J. Chem. Phys. 2000, 113, 6361.
[133] N. G. Martinelli, M. Savini, L. Muccioli, Y. Olivier, F. Castet, C. Zannoni, D. Beljonne, J. Cornil, Adv. Funct. Mater. 2009, 19, 3254.
[134] B. Jaeckel, J. B. Sambur, B. A. Parkinson, J. Appl. Phys. 2008, 103, 063719.
[135] H. Yoshida, N. Sato, Appl. Phys. Lett. 2007, 91, 141915.