簡易檢索 / 詳目顯示

研究生: 張勝銓
Zhang, Sheng-Quan
論文名稱: 雷射輔助玻璃粉末/樹脂加熱及玻璃接合之研究
Study of laser heating and bonding on glass with glass powder/resin
指導教授: 林震銘
Lin, Jehn-ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 107
中文關鍵詞: 玻璃粉末雷射接合球鏡
外文關鍵詞: Glass powder, Laser bonding, Ball-lens
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討利用雷射輔助玻璃粉末/樹脂加熱及玻璃接合之可行性。數值模擬使用有限元素分析軟體ANSYS,模擬連續式雷射加熱及脈衝式雷射接合試件之溫度與應力分佈。實驗方面分為兩部份。雷射加熱去膠實驗中,先將玻璃粉末和環氧樹脂混合塗佈於鈉鈣玻璃基板,利用連續式CO2雷射對玻璃膠試件加熱去膠,以雷射功率及移動速度為實驗參數,討論玻璃膠試件的加熱去膠情形,且同時進行溫度量測,並高溫爐烘烤去膠實驗結果做對照。實驗結果顯示,如加工參數調整得當,雷射加熱可得到與高溫爐烘烤機制近似的去膠結果,且大幅縮短加工時間。雷射接合實驗中,使用脈衝式Nd-YAG雷射接合玻璃試件,以雷射功率為實驗參數,於實驗結果中發現粉末有噴散現象,因此提出脈衝式Nd-YAG雷射搭配球鏡預力接合的改善方法。實驗結果得知,透過球鏡施加預力負載於試件上,可有效改善玻璃粉末的噴散現象。
    本研究之玻璃接合試件強度薄弱,因此以銲道刮痕實驗檢測單邊試件之粉末附著力,實驗結果顯示,玻璃粉末附著力會隨著雷射能量增加而提高,此外,因脈衝雷射搭配球鏡改善粉末噴散現象,使得粉末附著面積增加而提高其附著力。

    The purpose of this study is to characterize the laser heating and bonding on glass sheets with the glass powder and resin compound. In the numerical analysis, the temperature distribution and thermal stress for both the continuous laser heating and pulsed laser bonding have been simulated by the finite element software ANSYS.

    The experiment was divided into the laser heating and bonding sections. In the laser heating process, the glass powder and epoxy resin were coated on a soda lime glass substrate and heated by the continuous CO2 laser with the thermal image measurement. With various laser powers and table speeds, the effects of the process parameters were discussed in the experiment and compared with the results in furnace heating. In the laser bonding process, the glass specimens were bonded by the pulsed Nd-YAG laser, an improved method of the pulsed Nd-YAG laser with the ball-lens was proposed to avoid the glass powder scattering. The adhesion force of the glass powder was measured in the scribing test.

    Both the numerical and experiment results show that the crack depth increased with the laser power. The adhesion force of the glass specimens increases with the laser power, and it was improved by the preloading of the ball-lens.

    中文摘要............................................................................................. I Extended Abstract................................................................................ II 誌謝..................................................................................................... VI 目錄..................................................................................................... VII 表目錄................................................................................................. XI 圖目錄................................................................................................. XII 符號說明............................................................................................. XIX 第一章 緒論..............................................................................................1 1-1研究背景與目的………………………………………………...1 1-2文獻回顧………………………………………………………...3 1-3本文架構………………………………………………………...9 第二章 製程說明與相關理論…………………………………………10 2-1雷射接合機制………………………………………………….10 2-2雷射燒結理論………………………………………………….13 2-2.1固態燒結原理…………………………………………..14 2-2.2固態燒結過程…………………………………………..15 2-3厚透鏡成像公式……………………………………………….18 2-4赫茲接觸力學………………………………………………….21 第三章 數值模擬………………………………………………………24 3-1有限元素分析軟體ANSYS介紹與分析流程………………..24 3-2材料性質……………………………………………………….26 3-3有限元素分析模型…………………………………………….27 3-4基本假設……………………………………………………….29 3-5加熱條件與邊界條件………………………………………….30 3-6數值模擬結果討論…………………………………………….33 3-6.1連續式雷射加熱之模擬結果……………………………33 3-6.1.1連續式雷射加熱之溫度分佈………….……….33 3-6.1.2連續式雷射加熱之應力分佈………….……….36 3-6.1.3參數討論……………………………….……….38 3-6.2脈衝式雷射接合之模擬結果……………………………41 3-6.2.1脈衝式雷射接合之溫度分佈…………………..41 3-6.2.2脈衝式雷射接合之應力分佈…………………..43 3-6.2.3參數討論……………………………….……….45 3-6.2.4脈衝式雷射搭配球鏡預力接合之溫度分佈......47 3-6.2.5脈衝式雷射搭配球鏡預力接合之應力分佈…..49 3-6.2.6參數討論……………………………….…….…51 3-7結果與討論……………………………………………………53 第四章 實驗……………………………………………………………55 4-1雷射加熱去膠實驗…………………..………………………..55 4-1.1實驗設備與配置…………………………..…………...55 4-1.2實驗流程與參數……………………………..………...58 4-1.3試件穿透率量測………………………………..……...60 4-1.4實驗結果與討論………………………………..……...61 4-1.5高溫爐加熱去膠實驗…………………………..……...66 4-1.5.1實驗設備與條件………………………..…….66 4-1.5.2實驗結果與討論……………………………...68 4-1.6雷射加熱去膠與爐溫加熱去膠實驗之之結果對照….69 4-1.7實驗與數值模擬結果之比較………………………….71 4-2雷射接合實驗………..………………………………………..73 4-2.1實驗設備與配置………………..……………………...73 4-2.2實驗流程與參數………………………..……………...75 4-2.3球鏡預力量測……………………..…………….……..76 4-2.4雷射功率量測……………………………………...…..78 4-2.5粉末噴散之ImageJ軟體驗證……….………………..79 4-2.6實驗結果與討論……………………..………………...80 4-2.6.1雷射功率與粉末噴散之關係………….…..…84 4-2.6.2雷射功率與裂紋深度之關係……………...…85 4-2.7銲道刮痕實驗…………..……………………………...86 4-2.7.1實驗流程及條件……………………………..87 4-2.7.1實驗結果…………………………………......88 4-2.8實驗與數值模擬結果之比較...............………………..90 4-3結果與討論……………………………………………............93 第五章 結論與未來發展…………………………………………........95 5-1結論……………………………...………….............................95 5-2未來發展與建議………………..………………………..........99 參考文獻…………………………………………................................100 附錄A …………………………………………....................................103 附錄B …………………………………………………………………104 附錄C …………………………………………………………………105 附錄D …………………………………………………………………106

    [1] Weichel S., De Reus R., Bouaidat S., Rasmussen P. A., Hansen O., Birkelund K., Dirac H., “Low-temperature anodic bonding to silicon nitride”, Sensors and Actuators, v 82, p 249-253, 2000.
    [2] Wei J., Xie H., Nai M. L., Wong C. K., Lee L. C., “Low temperature wafer anodic bonding”, Journal of Micromechanics and Microengineering, v 13, p 217-222, 2003.
    [3] Cheng Y. T., Lin L. W., Najafi K., “Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging”, Journal of icroelectromechanical Systems, v 9, p 3-8, 2000.
    [4] Lin L. W., Cheng, Y. T., Najafi K., “Formation of Silicon-Gold Eutectic Bond Using Localized Heating Method”, Japanese Journal of Applied Physics, v 37, p 1412-1414, 1998.
    [5] Cheng Y. T., Hsu W. T., Najafi K., Nguyen Clark T.-C., Lin L. W., “Vacuum Packaging Technology Using Localized Aluminum/Silicon-to-Glass Bonding”, Journal of Microelectromechanical systems, v 11, p 556-565, 2002.
    [6] Wild M. J., Gillner A., Poprawe R., “Locally selective bonding of silicon and glass with laser”, Sensors and Actuators A: Physical, v 93, p 63-69, 2001.
    [7] Wu Q., Lorenz N., Cannon K. M., Hand D. P., “Glass frit as a hermetic joining layer in laser based joining of miniature devices”, IEEE Transactions on Components and Packaging Technologies, v 33, p 470-477, 2010.
    [8] Wu Q., Lorenz N., Cannon K., Wang C. H., Moore A. J., Hand Duncan P., “Hermetic joining of micro-devices using a glass frit intermediate layer and a scanning laser beam”, Electronics System-Integration Technology Conference, p 669-677, 2008.
    [9] Mescheder U. M., Alavi M., Hiltmann K., Lietzau Ch., Nachtigall Ch., Sandmaier H., “Local laser bonding for low temperature budget”, Sensors and Actuators, A: Physical, v 97-98, p 422-427, April 1, 2002.
    [10] Witte R., Herfurth H., Heinemann S., “Laser joining of glass with silicon”, Proceedings of SPIE - The International Society for Optical Engineering, v 4637, p 487-495, 2002.
    [11] Tseng A. A., Park J. S., “Effects of surface roughness and oxide layer on wafer bonding strength using transmission laser bonding technique”, Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, v 2006, p 1349-1357, 2006.
    [12] Park J. S., Tseng A. A., “Line bonding of wafers using transmission laser bonding technique for microsystem packaging”, Thermal and Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, v 2006, p 1358-1364, 2006.
    [13] Li M. Y., Huang Y. H., Hua Z. K., Zhang J. H., “Finite element analysis of laser bonding process on organic light-emitting device”, 2010 12th Electronics Packaging Technology Conference, EPTC 2010, p 190-194, 2010.
    [14] Huang Y. H., Li M. Y., Lai Y. N., Chen Z. M., Zhang J. H., “Laser bonding system for semiconductor device and MEMS encapsulation”, 2011 International Conference on Electronic Packaging Technology and High Density Packaging, p 745-748, 2011.
    [15] Lorenz N., Millar S., Desmulliez M., Hand D. P., “Hermetic glass frit packaging in air and vacuum with localized laser joining”, Journal of Micromechanics and Microengineering, v 21, n 4, April 2011.
    [16] Ribeiro F., José M., Rui C., Joaquim G., Luísa A., Adélio M., “Laser assisted glass frit sealing of dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, v 96, n 1, p 43-49, January 2012.
    [17] Chen Z. M., Lai Y. N., Yang L. Q., Zhang J. H., “Mechanical strength and interface characteristics of glass-to-glass laser bonding using glass frit”, 2012 International Conference on Electronic Packaging Technology & High Density Packaging, p 1609-1613, 2012.
    [18] Rui C., João Alexandre D. C. R., José M., Fernando R., Silva D., Batista A. M., José M. O., Fernandes M. H. F. V., Aguilar R. H., Gabriel M. J., Adélio M., “Glass-glass laser-assisted glass frit bonding”, IEEE Transactions on Components, Packaging and Manufacturing Technology, v 2, n 12, p 1949-1956, 2012.
    [19] Lai Y. N., Chen Z. M., Huang Y. H., Zhang J. H., “The Process and Reliability Tests of Glass-to-glass Laser Bonding for Top-emission OLED Device”, Electronic Components and Technology Conference, p 2036-2041, 2012 IEEE 62nd.

    [20] Logunov S., Marjanovic S., Balakrishnan J., “Laser Assisted Frit Sealing for High Thermal Expansion Glasses”, Journal of Laser Micro/Nanoengineering, v. 7, No. 3, 2012.
    [21] Bardin F., Kloss S., Wang C. H., Moore A. J., Jourdain A., De Wolf I., Hand D.P., “Laser Bonding of Glass to Silicon Using Polymer for Microsystems Packaging”, Journal of Microelectromechanical Systems, v 16, p571-580, 2007.

    [22] Kalpakjian S., Schmid S. R., “Manufacturing Processes for Engineering Materials”, Prentice Hall , Singapore, 2008.
    [23] German R. M., “Sintering theory and practice”, Wiley Interscience, 1996.
    [24] Randall M., “Powder Metallurgy Science”, Metal Powder Industries Federation, German, 1994.
    [25] M. Young, “Optical and Lasers”, Springer, Berlin, 2000.
    [26] Van Aken R., “Single mode Fiber to plannar waveguide coupling with ball lenses”, Eindhoven University of Technology Faculty of Electrical Engineering Telecommunications Division EC,1991.
    [27] Johnson K. L., “Contact Mechanics”, Press Syndicate of the University of Cambridge., New York., 1985.
    [28] Dintwa E., Tijskens E., Ramon H., “On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres”, Granular Matter, v 10, n 3, p 209-221, March 2008.
    [29] 陳信吉, “ANSYS入門”,全華圖書股份有限公司, 2009.
    [30] Narottam P. B., Doremus R. H., “Handbook of glass properties”, Academic Press Inc., Orlando, 1986.
    [31] Yukio M., Masashi M., Hirotaka H., Supamard S., Yoshiharu M., “Study on a Controlling Method for Crack Nucleation and Propagation Behavior in Laser Cutting of Glass”, Journal of Solid Mechanics and Materials Engineering, v 2, n 12, 2008.
    [32] Helebrant A., Buerhop C., WeiBmann R., “Mathematical modeling of temperature distribution during CO2 laser irradiation of glass”, Glass Technology, v 34, n 4, p154-158, 1995.
    [33] 黃坤祥, “粉末冶金學”,中華民國粉末冶金學會, 2001.
    [34] Pilkington North America, Inc., “Properties of soda-lime-silica float glass”, Pilkington North America, Inc., Toledo, 2012.
    [35] Yamamoto K., Hasaka N., Morita H., Ohmura E., “Three-dimensional thermal stress analysis on laser scribing of glass”, Precision Engineering, v 32, p 301-308, 2008.
    [36] Corning, Inc., “Glass code 7740”, Corning, Inc., New York, 1987.
    [37] Tanguy R., “Elastic Properties and Short-to Medium-Range Order in Glasses”, Journal of the American Ceramic Society, v 90, p 3019–3039, 2007.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE