簡易檢索 / 詳目顯示

研究生: 陳奕同
Chen, Yi-Tung
論文名稱: 探討參與ATP生成酵素的功能
Investigation of the function of the ATP-generating enzyme
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 瓦氏效應丙酮酸激酶低氧p53低氧誘導因子1
外文關鍵詞: hypoxia-inducible factor 1, p53, PKM2, hypoxia, Warburg effect
相關次數: 點閱:169下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 西元1924年,Otto Warbug提出癌細胞具有高效率的糖解作用並作為主要的能量來源,即使在正常氧濃度下仍不偏向進行氧化磷酸化;這現象也依據他命名為“瓦氏效應”。瓦氏效應不但能促進腫瘤細胞的生長,對於癌細胞的抗藥性、轉移也有重要的影響。M2型丙酮酸激酶(PKM2)為促成瓦氏效應的主要因子係由於PKM2的活性能受致癌基因的調控,使癌細胞能有效的利用葡萄糖做為合成反應的骨架。在腫瘤發展過程中,缺氧是一個重要的環境因素;且缺氧是一個造成瓦氏效應的可能性機制。低氧刺激會使PKM2表現量增加,顯示缺氧、PKM2及瓦氏效應的關聯性。
    為了探討PKM2對於缺氧的影響,因此我建立PKM2持續性沉默細胞。抑制細胞的PKM2表現對於細胞的生長、型態並沒有顯著的影響,對於細胞粒線體膜電位則有提升的作用。在HeLa與A549細胞中,抑制PKM2會使ROS生成減少;在H1299細胞中則是會增加ROS生成量。ROS生成量與細胞面對氧化壓力的敏感性有關,過去的研究指出PKM2能進入細胞核調控細胞凋亡;顯示PKM2的表現與氧化壓力的抵抗性的可能關聯性。粒線體中的電子傳遞鏈抑制物能增加細胞的ROS生成量而導致細胞凋亡,選擇以複合體I抑制物–Rotenone處理細胞;結果顯示沉默PKM2表現能有較高的存活率,初步證實PKM2能促進細胞在氧化壓力下的細胞凋亡。
    分析細胞處理低氧後的存活、死亡比例,在HeLa-shPKM2、A549-shPKM2的存活率比野生型細胞高;顯示PKM2表現能誘導低氧環境中的細胞凋亡。H1299細胞處理低氧後,主要是進行細胞壞死;而野生型H1299與H1299-shPKM2的細胞壞死程度沒有差異。低氧會使缺氧誘導因子1與p53表現量增加,兩者交互作用能決定細胞凋亡與否。抑制PKM2能減少p53在低氧刺激的上升量,顯示PKM2能促進p53的穩定表現。持續性沉默PKM2穩定細胞株在低氧處理後的缺氧誘導因子1表現較多,且低氧處理後的過氧化氫生成量也較高;顯示抑制PKM2表現有助於低氧誘導因子1的穩定。這些結果都顯示PKM2能在低氧環境調控p53與缺氧誘導因子1表現而影響細胞凋亡。

    In 1924, Otto Warburg proposed a concept that cancer cells with high efficiency glycolysis as the major source of energy; even in normal oxygen concentration, cancer cells did not tend to carry out oxidative phosphorylation; which was the basis of his being named as “ Warburg effect”. Warburg effect not only promotes the growth of tumor cell, but also has important implications for tumor drug-resistant and metastasis. The main factor promoting Warburg effect is PKM2, as a result of its activity could be regulated by oncogene, so cancer cells can effectively use glucose as the skeleton for anabolism. In the process of tumor development, hypoxia is an important environmental factors; hypoxia is a possibile mechanism for Warburg effect. Hypoxia stimulates increasing the level of PKM2, indicating the correlation between hypoxia, PKM2, and Warburg effect.
    In order to explore the impact of PKM2 on hypoxia, so I established the stable PKM2-silence cell line. Suppression of PKM2 has no apparent impact on cell growth and morphology, but enhancing the intensity of mitochondrial membrane potential. In HeLa and A549 cells, inhibition of PKM2 would reduce ROS generation; suppression of PKM2 in H1299 cell led to increase in ROS generation. ROS producing amount was relevant in of sensitiveness to oxidative stress, the past research pointed out that PKM2 could translocate to nucleus and control apoptosis; these results showed the association of PKM2 and oxidative resistance. Mitochondrial electron transport chain inhibitor could improve ROS generation leading to apoptosis; firstly, I chose complex I inhibitor-Rotenone to treat with cells. The results revealed that repression of PKM2 could provide higher survival rate, preliminary identified PKM2 could promote apoptosis under oxidative stress.
    Analysis of cell survival after hypoxia treatment, the survival rate of HeLa-shPKM2 and A549-shPKM2 are higher than wild-type cells; indicating PKM2 could cause apoptosis in hypoxic. Dealing H1299 cells with hypoxic primarily lead to cell necrosis; there is no difference in the degree of cell necrosis between wild-type H1299 and H1299-shPKM2 cell lines. Hypoxia causes increase in Hypoxia-inducible factor-1 and p53 expression, whether or not apoptosis is dependent on the interaction between the two. Suppression of PKM2 could reduce the increase in p53 under hypoxic stimulus, showing PKM2 could promote the stability of p53 expression. The stable PKM2-silence cells expressed higher hypoxia-inducible factor 1 and hydrogen peroxide generation than wild-type cells after hypoxia treatment, pointing that inhibition of PKM2 contributed to hypoxia-inducible factor 1 stability. These results indicate that PKM2 can influence apoptosis in hypoxia by regulating p53 and hypoxia-inducible factor 1.

    第一章 序論 1-1 瓦氏效應. 1 1-2 丙酮酸激酶.2 1-3 p53與粒線體對細胞的意義.4 1-4 研究動機.5 第二章 實驗材料方法 A. 實驗材料 A-1 勝任細胞.6 A-2 分子技術所需酵素. 7 A-3 實驗胞株.7 A-4 化學藥品.7 A-5 試劑.10 A-6 抗體.11 A-7 培養液.12 A-8 冷光試驗.13 A-9 緩衝液的配製.14 A-10 儀器設備.18 B. 方法 B-1 細胞培養.19 B-2 基本分子生物技術.21 B-3 細胞實驗方法 (1)短暫性轉染.27 (2)雙重冷光基因試驗.27 (3)蛋白質定量.28 (4) 西方墨點法.28 (5)免疫螢光染色.30 (6)建立持續性沉默細胞株.30 (7) 細胞生長照相分析.31 (8)細胞增殖分析.31 (9)溴脫氧尿核苷混核試驗.32 (10)傷口瘉合試驗.32 (11)群落生成能力試驗.33 (12)流式細胞儀分析.33 (13)細胞週期分析.33 (14)細胞凋亡偵測試驗.34 (15)細胞ATP含量測定.35 (16)細胞乳酸活性分析.36 第三章 實驗結果 3-1 PKM2在腫瘤細胞的表現情形.37 3-2 利用siRNA評估系統篩選出有效的siPKM2進而合成shPKM2.37 3-3 建立持續性沉默PKM2的HeLa細胞株.38 3-4 分析野生型HeLa細胞和HeLa-shPKM2的細胞生長、DNA複製速率、群落生成能力.38 3-5 分析持續性沉默PKM2對粒線體的影響.39 3-6 進行HeLa-shPKM2的蛋白表現分析.39 3-7 分析野生型HeLa與HeLa-shPKM2對於氧化壓力的敏感性.40 3-8 野生型HeLa與HeLa-shPKM2對於葡萄糖的敏感性.41 3-9 分析在低氧情況下,抑制PKM2對細胞的影響.42 3-10 建立持續沉默PKM2的H1299細胞株.43 3-11 分析在H1299細胞沉默PKM2表現對細胞的生長與粒線體的影響.43 3-13 分析野生型H1299與H1299-shPKM2對粒線體抑制物的敏感性.44 3-14 分析低氧對野生型H1299與H1299-shPKM2的影響.45 3-15 建立持續沉默PKM2的A549細胞株.45 3-16 分析在A549細胞沉默PKM2表現對生長的影響.46 3-17 分析持續性沉默PKM2對A549細胞的粒線體的影響.46 3-18 分析野生型A549與A549-shPKM2對粒線體抑制物與2-DG的敏感性.46 3-19 分析野生型A549與A549-shPKM2對於低氧的反應.47 第四章 討論 4-1 補償作用.48 4-2 探討PKM2對於粒線體抑制物的反應.49 4-3 低氧試驗.50 4-4 PKM2對於癌細胞的意義.52 參考文獻.53 實驗圖表.66 作者簡歷.89

    Alarcon, R., Koumenis, C., Geyer, R.K., Maki, C.G., and Giaccia, A.J. (1999). Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res 59, 6046-6051.

    Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E., and Vousden, K.H. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-120.

    Bensaad, K., and Vousden, K.H. (2007). p53: new roles in metabolism. Trends Cell Biol 17, 286-291.

    Boren, J., Cascante, M., Marin, S., Comin-Anduix, B., Centelles, J.J., Lim, S., Bassilian, S., Ahmed, S., Lee, W.N., and Boros, L.G. (2001). Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem 276, 37747-37753.

    Boulahbel, H., Duran, R.V., and Gottlieb, E. (2009). Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans 37, 291-294.

    Brahimi-Horn, M.C., and Pouyssegur, J. (2005). The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int Rev Cytol 242,
    157-213.
    Brenner-Lavie, H., Klein, E., and Ben-Shachar, D. (2009). Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem Pharmacol 78, 85-95.

    Carmeliet, P., Dor, Y., Herbert, J.M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490.

    Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L., and Cantley, L.C. (2008a). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233.

    Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M., and Cantley, L.C. (2008b). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181-186.

    Corcoran, C.A., Huang, Y., and Sheikh, M.S. (2006). The regulation of energy generating metabolic pathways by p53. Cancer Biol Ther 5, 1610-1613.

    Deberardinis, R.J., Sayed, N., Ditsworth, D., and Thompson, C.B. (2008). Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18, 54-61.

    Denko, N.C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705-713.
    Dhar-Chowdhury, P., Malester, B., Rajacic, P., and Coetzee, W.A. (2007). The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci 64, 3069-3083.

    Eigenbrodt, E., Reinacher, M., Scheefers-Borchel, U., Scheefers, H., and Friis, R. (1992). Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog 3, 91-115.

    Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425-434.

    Ferguson, E.C., and Rathmell, J.C. (2008). New roles for pyruvate kinase M2: working out the Warburg effect. Trends Biochem Sci 33, 359-362.

    Feron, O. (2009). Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol.

    Fridman, J.S., and Lowe, S.W. (2003). Control of apoptosis by p53. Oncogene 22, 9030-9040.

    Gatenby, R.A., and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4, 891-899.

    Green, D.R., and Chipuk, J.E. (2006). p53 and metabolism: Inside the TIGAR. Cell 126, 30-32.
    Green, D.R., and Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science 305, 626-629.

    Guzy, R.D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K.D., Simon, M.C., Hammerling, U., and Schumacker, P.T. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1, 401-408.

    Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H., and Oren, M. (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9, 2170-2183.

    Hockel, M., Schlenger, K., Hockel, S., and Vaupel, P. (1999). Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59, 4525-4528.

    Johnson, T.M., Yu, Z.X., Ferrans, V.J., Lowenstein, R.A., and Finkel, T. (1996). Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci U S A 93, 11848-11852.

    Jurica, M.S., Mesecar, A., Heath, P.J., Shi, W., Nowak, T., and Stoddard, B.L. (1998). The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6, 195-210.

    Kang, H.T., Ju, J.W., Cho, J.W., and Hwang, E.S. (2003). Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J Biol Chem 278, 51223-51231.

    Keith, B., and Simon, M.C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell 129, 465-472.

    Kim, J.W., and Dang, C.V. (2005). Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30, 142-150.

    Kim, J.W., and Dang, C.V. (2006). Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66, 8927-8930.

    Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177-185.

    Kondoh, H., Lleonart, M.E., Gil, J., Wang, J., Degan, P., Peters, G., Martinez, D., Carnero, A., and Beach, D. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Res 65, 177-185.

    Kress, S., Stein, A., Maurer, P., Weber, B., Reichert, J., Buchmann, A., Huppert, P., and Schwarz, M. (1998). Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124, 315-320.

    Lee, J., Kim, H.K., Han, Y.M., and Kim, J. (2008). Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol 40, 1043-1054.
    Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H., and Kim, K.W. (2004). Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36, 1-12.

    Levine, A.J., Finlay, C.A., and Hinds, P.W. (2004). P53 is a tumor suppressor gene. Cell 116, S67-69, 61 p following S69.

    Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J.A., and Robinson, J.P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278, 8516-8525.

    Lu, H., Forbes, R.A., and Verma, A. (2002). Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277, 23111-23115.

    Ma, W., Sung, H.J., Park, J.Y., Matoba, S., and Hwang, P.M. (2007). A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 39, 243-246.

    Majewski, N., Nogueira, V., Robey, R.B., and Hay, N. (2004). Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24, 730-740.

    Mathupala, S.P., Ko, Y.H., and Pedersen, P.L. (2009). Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol 19, 17-24.

    Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F., and Hwang, P.M. (2006). p53 regulates mitochondrial respiration. Science 312, 1650-1653.

    Mazurek, S., Boschek, C.B., Hugo, F., and Eigenbrodt, E. (2005). Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15, 300-308.

    Mazurek, S., Grimm, H., Boschek, C.B., Vaupel, P., and Eigenbrodt, E. (2002). Pyruvate kinase type M2: a crossroad in the tumor metabolome. Br J Nutr 87 Suppl 1, S23-29.

    Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577-590.

    Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E. (2007). Energy metabolism in tumor cells. FEBS J 274, 1393-1418.

    Nakamura, M., Bodily, J.M., Beglin, M., Kyo, S., Inoue, M., and Laimins, L.A. (2009). Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology 387, 442-448.

    Osherovich, L. (2008). Hitting cancer’s sweet spot. SciBX 1-3.

    Osinsky, S., Zavelevich, M., and Vaupel, P. (2009). Tumor hypoxia and malignant progression. Exp Oncol 31, 80-86.

    Pan, J.G., and Mak, T.W. (2007). Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE 2007, pe14.

    Pastorino, J.G., and Hoek, J.B. (2003). Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 10, 1535-1551.

    Pastorino, J.G., Shulga, N., and Hoek, J.B. (2002). Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277, 7610-7618.

    Pelicano, H., Feng, L., Zhou, Y., Carew, J.S., Hileman, E.O., Plunkett, W., Keating, M.J., and Huang, P. (2003). Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278, 37832-37839.

    Pelicano, H., Martin, D.S., Xu, R.H., and Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646.

    Piret, J.P., Mottet, D., Raes, M., and Michiels, C. (2002). Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 64, 889-892.
    Plas, D.R., and Thompson, C.B. (2002). Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 13, 75-78.

    Presek, P., Reinacher, M., and Eigenbrodt, E. (1988). Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett 242, 194-198.

    Ramanathan, A., Wang, C., and Schreiber, S.L. (2005). Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A 102, 5992-5997.

    Ravi, R., Mookerjee, B., Bhujwalla, Z.M., Sutter, C.H., Artemov, D., Zeng, Q., Dillehay, L.E., Madan, A., Semenza, G.L., and Bedi, A. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14, 34-44.

    Rempel, A., Mathupala, S.P., Griffin, C.A., Hawkins, A.L., and Pedersen, P.L. (1996). Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res 56, 2468-2471.

    Salceda, S., and Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272, 22642-22647.

    Scaduto, R.C., Jr., and Grotyohann, L.W. (1999). Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76, 469-477.

    Schmaltz, C., Hardenbergh, P.H., Wells, A., and Fisher, D.E. (1998). Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 18, 2845-2854.

    Schmid, T., Zhou, J., and Brune, B. (2004a). HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med 8, 423-431.

    Schmid, T., Zhou, J., Kohl, R., and Brune, B. (2004b). p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HIF-1). Biochem J 380, 289-295.

    Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B., and Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77-85.

    Semenza, G.L. (2001). HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13, 167-171.

    Simon, M.C. (2004). Siah proteins, HIF prolyl hydroxylases, and the physiological response to hypoxia. Cell 117, 851-853.

    Spoden, G.A., Rostek, U., Lechner, S., Mitterberger, M., Mazurek, S., and Zwerschke, W. (2009). Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp Cell Res.

    Stetak, A., Veress, R., Ovadi, J., Csermely, P., Keri, G., and Ullrich, A. (2007). Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res 67, 1602-1608.

    Taylor, R.W., and Turnbull, D.M. (2005). Mitochondrial DNA mutations in human disease. Nat Rev Genet 6, 389-402.

    Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.

    Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314.

    Wigfield, S.M., Winter, S.C., Giatromanolaki, A., Taylor, J., Koukourakis, M.L., and Harris, A.L. (2008). PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98, 1975-1984.

    Wong, T.S., Liu, X.B., Chung-Wai Ho, A., Po-Wing Yuen, A., Wai-Man Ng, R., and Ignace Wei, W. (2008). Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 123, 251-257.
    Xu, R.H., Pelicano, H., Zhou, Y., Carew, J.S., Feng, L., Bhalla, K.N., Keating, M.J., and Huang, P. (2005). Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65, 613-621.

    Yang, J., Ahmed, A., Poon, E., Perusinghe, N., de Haven Brandon, A., Box, G., Valenti, M., Eccles, S., Rouschop, K., Wouters, B., et al. (2009). Small-molecule activation of p53 blocks hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in vivo and leads to tumor cell apoptosis in normoxia and hypoxia. Mol Cell Biol 29, 2243-2253.

    Yeh, C.S., Wang, J.Y., Chung, F.Y., Lee, S.C., Huang, M.Y., Kuo, C.W., Yang, M.J., and Lin, S.R. (2008). Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncol Rep 19, 81-91.

    Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu, W., Li, Z., Gong, L., Peng, Y., et al. (2009). Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324, 261-265.

    Zheng, L., Roeder, R.G., and Luo, Y. (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 255-266.

    Zheng, X., Ruas, J.L., Cao, R., Salomons, F.A., Cao, Y., Poellinger, L., and Pereira, T. (2006). Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: role of subcellular compartmentalization. Mol Cell Biol 26, 4628-4641.

    下載圖示 校內:2014-08-13公開
    校外:2014-08-13公開
    QR CODE