| 研究生: |
許如意 Syu, Ru-Yi |
|---|---|
| 論文名稱: |
不等樣本數下平均數異質分析 Heteroscedastic Analysis of Means with Unequal Sample Sizes |
| 指導教授: |
溫敏杰
Wen, Miin-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 一階段抽樣方法 、單因子設計 、不平衡設計 |
| 外文關鍵詞: | Single-stage sampling procedure, One-way layout, Unbalanced design |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平均數分析(Analysis of means, ANOM)的優點是可以藉由圖形的方式來呈現分析的結果,並能清楚看出k個母體平均數與整體平均數之間的差異情形。而傳統ANOM模型的基本假設為變異數必須同質,然而在實際案例中,k個母體的變異數不等且未知與每個母體所抽取的樣本數不相等是經常碰到的問題,Nelson and Dudewicz (2002)利用Stein (1945)所提出之二階段抽樣方法解決變異數異質性下的平均數分析問題。本研究採用一階段抽樣方法處理不平衡設計之下平均數異質分析,可以有效避免二階段抽樣方法因須加抽樣本數,導致成本增加,或是執行不易的問題。
The analysis of means (ANOM) compares the mean of each group to the overall mean and can be presented in a graphical form. From the graphical result, we can clearly indicate which one is different. The one of assumption of the classical ANOM model is that the variances are equal. However, the variances and the sample sizes are often not equal in the real cases. Nelson and Dudewicz (2002) developed two-stage sampling procedure which was proposed by Stein (1945) to deal with ANOM models under heteroscedasticity (HANOM). Two-stage sampling procedure must add samples, but it is not practical all the time. The single-stage sampling procedure can avoid the disadvantage of two-stage sampling procedure. In this study, we attack HANOM model in one-way layout and unbalanced design by single-stage sampling procedure.
Bishop, T. A. and Dudewicz, E. J. (1978). Exact analysis of variance with unequal
variances: test procedures and tables. Technometrics, 20, 419-430.
Chen, H. J. and Lam, K. (1989). Single-stage interval estimation of the largest normal
mean under heteroscedasticity. Communications in Statistics - Theory and
Methods, 18(10), 3703-3718.
Chen, S. Y. and Chen, H. J. (1998). Single-stage analysis of variance under heteroscedasticity.
Communications in Statistics - Simulation and Computation,
27(3), 641-666.
Hung, T. H. (2010). Analysis of means under heteroscedasticity. National Cheng
Kung University Department of Statistics Master Thesis .
LaPlace, P. S. (1827). Memoire sur le flux et reflux lunaire atmospheric. In Connaissance
des Temps pour l'an, 1830, 3-18.
Nelson, P. R. (1982). Exact critical points for the analysis of means. Communications
in Statistics: Theory and Methods, 11(6), 699-709.
Nelson, P. R. (1991). Numerical evaluation of multivariate normal integrals with
correlations. The Frontiers of Statistical Sciencetific Theory & Industrial
Application, 97-114.
Nelson, P. R. and Dudewicz, E. J. (2002). Exact analysis of means with unequal
variances. Technometrics, 44(2), 152-160.
Ott, E. R. (1967). Analysis of Means-A Graphical Procedure. Industrial Quality
Control, 24, 101-109. Reprinted in Journal of Quality Technology, 15(1983),
10-18.
Soong, W. C. and Hsu, J. C. (1997). Using complex integration to compute multivariate
normal probability. Journal of Computational and Graphical Statistics,
6, 397-425.
Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent
of the variance. The Annals of Mathematical Statistics, 16(3), 243-258.
Wen, M. J. and Chen, H. J. (1994). Single-stage multiple comparison procedures
under heteroscedasticity. American Journal of Mathematical and Management
Sciences, 14, 1-48.
Wludyka, P. S. and Nelson, P. R. (1997). An analysis-of-means-type test for variances
from normal populations. Technometrics, 39(3), 274-285.
Wu, S. F. and Chen, H. J. (1998). Multiple comparisons with the average for normal
distributions. American Journal of Mathematical and Management Sciences,
18(1), 193-218.