簡易檢索 / 詳目顯示

研究生: 許如意
Syu, Ru-Yi
論文名稱: 不等樣本數下平均數異質分析
Heteroscedastic Analysis of Means with Unequal Sample Sizes
指導教授: 溫敏杰
Wen, Miin-Jye
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 32
中文關鍵詞: 一階段抽樣方法單因子設計不平衡設計
外文關鍵詞: Single-stage sampling procedure, One-way layout, Unbalanced design
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 平均數分析(Analysis of means, ANOM)的優點是可以藉由圖形的方式來呈現分析的結果,並能清楚看出k個母體平均數與整體平均數之間的差異情形。而傳統ANOM模型的基本假設為變異數必須同質,然而在實際案例中,k個母體的變異數不等且未知與每個母體所抽取的樣本數不相等是經常碰到的問題,Nelson and Dudewicz (2002)利用Stein (1945)所提出之二階段抽樣方法解決變異數異質性下的平均數分析問題。本研究採用一階段抽樣方法處理不平衡設計之下平均數異質分析,可以有效避免二階段抽樣方法因須加抽樣本數,導致成本增加,或是執行不易的問題。

    The analysis of means (ANOM) compares the mean of each group to the overall mean and can be presented in a graphical form. From the graphical result, we can clearly indicate which one is different. The one of assumption of the classical ANOM model is that the variances are equal. However, the variances and the sample sizes are often not equal in the real cases. Nelson and Dudewicz (2002) developed two-stage sampling procedure which was proposed by Stein (1945) to deal with ANOM models under heteroscedasticity (HANOM). Two-stage sampling procedure must add samples, but it is not practical all the time. The single-stage sampling procedure can avoid the disadvantage of two-stage sampling procedure. In this study, we attack HANOM model in one-way layout and unbalanced design by single-stage sampling procedure.

    1. 緒論.............................1 1.1 研究背景與動機....................1 1.2 研究流程................................3 2. 文獻探討..................................4 2.1 平均數分析........................... 4 2.2 變異數異質性....................... 4 3. 一階段抽樣方法......................6 4. 樣本數不相等下一因子平均數異質分析........9 4.1 平均數異質分析.................................9 4.2 模擬臨界值.......................................10 4.3 模擬 p 值........................................12 5. 平均數分析法檢定母體變異數............13 5.1 檢定變異數同質性.....................13 5.2 模擬臨界值...........................14 6. 實例分析....................................16 6.1 青黴菌實驗.................................16 6.2 製程機台量測問題....................19 6.3 與傳統平均數分析比較................20 7. 結論與建議.......................................24 參考文獻...................................25 Appendix..................................27 A. R 程式碼..............................28

    Bishop, T. A. and Dudewicz, E. J. (1978). Exact analysis of variance with unequal
    variances: test procedures and tables. Technometrics, 20, 419-430.
    Chen, H. J. and Lam, K. (1989). Single-stage interval estimation of the largest normal
    mean under heteroscedasticity. Communications in Statistics - Theory and
    Methods, 18(10), 3703-3718.
    Chen, S. Y. and Chen, H. J. (1998). Single-stage analysis of variance under heteroscedasticity.
    Communications in Statistics - Simulation and Computation,
    27(3), 641-666.
    Hung, T. H. (2010). Analysis of means under heteroscedasticity. National Cheng
    Kung University Department of Statistics Master Thesis .
    LaPlace, P. S. (1827). Memoire sur le flux et reflux lunaire atmospheric. In Connaissance
    des Temps pour l'an, 1830, 3-18.
    Nelson, P. R. (1982). Exact critical points for the analysis of means. Communications
    in Statistics: Theory and Methods, 11(6), 699-709.
    Nelson, P. R. (1991). Numerical evaluation of multivariate normal integrals with
    correlations. The Frontiers of Statistical Sciencetific Theory & Industrial
    Application, 97-114.
    Nelson, P. R. and Dudewicz, E. J. (2002). Exact analysis of means with unequal
    variances. Technometrics, 44(2), 152-160.
    Ott, E. R. (1967). Analysis of Means-A Graphical Procedure. Industrial Quality
    Control, 24, 101-109. Reprinted in Journal of Quality Technology, 15(1983),
    10-18.
    Soong, W. C. and Hsu, J. C. (1997). Using complex integration to compute multivariate
    normal probability. Journal of Computational and Graphical Statistics,
    6, 397-425.
    Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent
    of the variance. The Annals of Mathematical Statistics, 16(3), 243-258.
    Wen, M. J. and Chen, H. J. (1994). Single-stage multiple comparison procedures
    under heteroscedasticity. American Journal of Mathematical and Management
    Sciences, 14, 1-48.
    Wludyka, P. S. and Nelson, P. R. (1997). An analysis-of-means-type test for variances
    from normal populations. Technometrics, 39(3), 274-285.
    Wu, S. F. and Chen, H. J. (1998). Multiple comparisons with the average for normal
    distributions. American Journal of Mathematical and Management Sciences,
    18(1), 193-218.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE