簡易檢索 / 詳目顯示

研究生: 張家富
Chang, Chia-Fu
論文名稱: 以標準化地下水位指數法評估屏東平原地下水資源開發區位之研究
Estimating Groundwater Development area in Pingtung Plain using Standardized Groundwater Index
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 92
中文關鍵詞: 標準化地下水位指數評估法標準化雨量指數評估法交互相關函數地下水位管理標準線地下水資源開發區位
外文關鍵詞: Standardized groundwater index, Standardized precipitation index, Cross correlations, groundwater level standard line, groundwater development area
相關次數: 點閱:161下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來受到極端氣候的影響,且因降雨型態的改變,臺灣面臨嚴重的缺水危機,本研究以臺灣南部屏東平原作為研究區域,提出一個簡單、有效且即時的缺水指標,首先利用標準化地下水位指數評估法(SGI)及標準化雨量指數評估法(SPI)分析地下水位資料及雨量資料,探討SGI與SPI兩者之間的相關性,並瞭解到不同區域地下水會有著不同的時間特性。另以標準化地下水位指數評估法(SGI)分析歷史地下水位變動,瞭解過去時間中研究區域地下水位變動強度與持續時間,本研究將SGI180條件下平均地下水位視為發生中等缺水情形之地下水位歷線,而以SGI360條件下平均地下水位視為發生極度缺水情形之地下水位歷線。透過分析SGI180以及SGI360條件所顯示的缺水訊號年份,將屏東平原地下水分成兩個不同區域,藉此指標建立屏東平原地下水位管理標準線,進而管理屏東平原地下水之用水情形,並評估該研究區域適合開發地下水之區位,若考慮在屏東平原進行地下水資源開發,其最適合做為長期穩定開發的地下水區域位於旗山溪下游以及東港溪中上游處,其剛好位處自由含水層及承壓含水層之交界。考慮到枯水期間水資源較匱乏,因此本研究另篩選出緊急備源水之區域,但在地下水開發上仍以長期穩定開發區域為優先考量。最後,本研究之研究成果將有助於政府即時掌握缺水狀況並解決水資源調配之問題。

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Pingtung plain. The standardized groundwater index (SGI) and standardized precipitation index (SPI) were then used to analyse the region’s drought characteristics. After calculation and analysis of the cross correlation function between the SGI and the SPI, understanding that different region groundwater has different time characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Pingtung plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Pingtung Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Pingtung plain. Considering groundwater development area in Pingtung plain, the most suitable locations as a long-term groundwater development area are located downstream in Qi Shan river and upstream in Tung Kang river, which are located between freedom aquifer and confined aquifer. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

    摘要 I 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究動機與文獻回顧 1 1.2 研究方法與流程 5 第二章 理論模式 6 2.1 標準化雨量指數評估法(Standardised Precipitation Index, SPI) 6 2.2 標準化地下水位指數評估法(Standardized Groundwater Index, SGI) 7 2.3 SPI與SGI之交互相關函數 8 2.4 地下水位長期變動趨勢之檢定與修正 8 2.4.1轉變點檢定- Cumulative Deviation檢定法 10 2.4.2變動趨勢修正 11 2.5 標準化地下水位建立 12 第三章 研究區域概述 16 3.1 研究區域概述 16 第四章 結果與討論 18 4.1 SPI與SGI之最大交互相關函數 19 4.2 篩選標準訊號年份 22 4.3 屏東平原地下水分區及標準地下水位線 25 4.3.1第一區地下水位測站之管理水位標準線及地下水位歷線 29 4.3.2 第二區地下水位測站之管理水位標準線及地下水位歷線 31 4.4 屏東平原地下水資源適合開發區域 73 4.4.1 地下水位測站分級 73 4.4.2 適合穩定開發區域測站之結果 76 4.5 屏東平原枯水期緊急備源用水 83 第五章 結論 86 參考文獻 87 附錄A-各測站使用資料年份一覽表 91

    1. 周嫦娥(2015),土木水利,第四十二卷,第四期,19-29。
    2. 徐年盛,江崇榮,汪中和,劉振宇,劉宏仁,黃建霖(2011),「地下水系統水平衡分析與補注原水量推估之研究」,中國土木水利工程學刊,第二十三卷,第四期。
    3. 楊偉甫(2015),土木水利,第四十二卷,第四期,04-08。
    4. 經濟部水利署(2002),臺灣地區地下水資源管理決策之原系統建置(2/4) ,經濟部水利署編印。
    5. 經濟部中央地質調查所(2012),臺灣地區地下水區水文地質調查及地下水資源評估地下水補注潛勢評估與地下水模式建置(4/4),,經濟部水利署編印。
    6. 經濟部水利署(2013),鳥嘴潭人工湖設置對彰化地區地層下陷防治之研究總報告,經濟部水利署編印。
    7. 經濟部水利署(2015),水利統計年報,經濟部水利署編印。
    8. Bloomfield J. P. and Marchant B. P. (2013). “Analysis of groundwater drought building on the standardised precipitation index approach,” Hydrology and Earth System Sciences, 17: 4769–4787.
    9. Chen, S. T. , Kuo, C. C. and Yu, P. S. (2009). “Historical trends and variability of meteorological droughts in Taiwan,” Hydrological Sciences Journal, 54(3): 430-441.
    10. Dezman, L. E., Shafer, B. A., Simpson, H. D., and Danielson, J. A. (1982).“Development of a surface water supply index—A drought severity indicator for Colorado.” International Symposium on Hydrometeorology, American Water Resources Association, Middleburg, VA.
    11. Dracup, J. A., Lee, K. S., and Paulson, E. G. (1980). “On the definition of drought.” Water Resources Research, 16: 297–302.
    12. Ji, L. & Peters, A. J. (2003), “Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices,” Remote Sensing of Environment, 87: 85–98.
    13. Lana, X., Serra, C. and Burgueno, A. (2001). “Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index for Catalonia (NE Spain),” International Journal of Climatology, 21(13): 1669–1691.
    14. López-Moreno, J. I., Vicente-Serrano, S. M., Beguería, S., García- Ruiz, J. M., Portela, M. M., and Almeida, A. B. (2009). “Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal,” Water Resources Research, 45.
    15. McKee, T. B., Doesken, N. J., and Leist, J. (1993). “The relationship of drought frequency and duration time scales,” Proceedings of the Eighth Conference on Applied Climatology, 179–184.
    16. Mishra, A. K. and Singh, V. P. (2010). “A review of drought concepts,” Journal of Hydrology, 391: 202–216.
    17. Mussá1, F. E. F., Zhou1, Y., Maskey, S., Masih, I., and Uhlenbrook, S. (2015). “Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa,” Hydrology and Earth System Sciences, 19: 1093–1106.
    18. Niemeyer, S. (2008). “New drought indices.” Options Méditerranéennes Série A: Séminaires Méditerranéens, 80: 267–274.
    19. Ntale, H. K. & Gan, T. Y. (2003). “Drought indices and their application to East Africa,” International Journal of Climatology, 23(11): 1335–1357.
    20. Palmer, W. C. (1965). “Meteorological drought.” Research Paper No. 45, Weather Bureau, U.S. Dept. of Commerce, Washington, DC.
    21. Palmer, W. C. (1968). “Keeping track of crop moisture conditions, nationwide: The new crop moisture index.” Weatherwise, 21: 156–161.
    22. Quiring, S. M. & Papakryiakou, T. N. (2003). “An evaluation of agricultural drought indices for the Canadian prairies,” Agricultural and Forest Meteorology, 118: 49–62.
    23. Ryu, J. H., Palmer, R. N., Jeong, S., and Lee, J. (2004). “Drought definitions and forecasts for water resources management,” Proceedings of the Journal of Water Resources Planning and Management, EWRI Congress.
    24. Sheffield, J., and Wood, E. F. (2008). “Global trends and variability in soil moisture and drought characteristics,” Journal of Climate, 21: 432–458.
    25. Shiau, J. T. (2006). “Fitting drought duration and severity with two-dimensional copulas,” Water Resources Management, 20: 795–815.
    26. Shulka, S. and Wood, A. W. (2008). “Use of a standardized runoff index for characterizing hydrologic drought,” Geophysical Research Letters, 35: 002-405,.
    27. Sohrabi, M. M., Ryu, J. H., Abatzoglou, J., and Tracy, J. (2015). “Development of Soil Moisture Drought Index to Characterize Droughts,” Journal of Hydrology, 20(on line).
    28. Tallaksen, L. M. and van Lanen, H. A. J. (2004). Hydrological drought Processes and estimation methods for streamflow and groundwater, Developments in Water Sciences 48, the Netherlands: Elsevier.
    29. van Lanen, H. A. J., Wanders, N., Tallaksen, L. M., and Van Loon, A. F. (2013). “Hydrological drought across the world: impact of climate and physical catchment structure,” Hydrology and Earth System Sciences, 17: 1715–1732.
    30. Vicente-Serrano, S. M. and López-Moreno, J. I. (2005). “Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin,” Hydrology and Earth System Sciences, 9: 523–533.
    31. Vicente-Serrano, S. M., Begueria, S., and Lopez-Moreno, J. I. (2010). “A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index,” Journal of Climate, 23: 1696–1718.
    32. Vidal, J.P., Martin, E., Franchistéguy, L., Habets, F., Soubeyroux, J.-M., Blanchard, M., and Baillon, M. (2010). “Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite,” Hydrology and Earth System Sciences, 14: 459–478.
    33. Wu, H., Hayes, M. J., Weiss, A. and Hu, Q. (2001). “An evaluation of the standardized precipitation index, the China-Z Index and the statistical Z-Score,” International Journal of Climatology, 21: 745–758.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE