| 研究生: |
廖國閔 LIAO, GUO MIN |
|---|---|
| 論文名稱: |
飛秒雷射於單晶銅材內部缺陷之修補研究 Defect Mending in Devices of Single Crystal Coppers by Femtosecond Pulsed Laser |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 204 |
| 中文關鍵詞: | 飛秒雷射 、分子動力 、缺陷修補 、實驗設計 |
| 外文關鍵詞: | Femtosecond Pulsed Laser, molecular dynamics, defects mending, experimental design |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過飛秒脈衝雷射於單晶銅材缺陷修補奈米空孔、乃至於微小裂縫與缺陷,已證實是未來修補各種固態材料內部結構之重要技術。本文提出一套分子動力學方法模擬飛秒雷射退火過程對單晶銅材內部缺陷修補之理論流程並提出改善修補效率的方法。
本文前半段以分子動力研究飛秒雷射誘生單晶銅材內部缺陷修補,使用了標準Morse勢能函數並結合無反射動力邊界技術,模擬孔與狹縫缺陷情形,透過差排理論進行視覺化特性分析與展現,並應用連體與原子等級結合式的模擬方法,探索微觀模擬的暫態現象與差排演化的過程,同時經由各物理量的展現,適度的評估修補效率,以提出此製程技術之修補效率與改善條件。透過各種不同能量密度下脈衝寬度的雷射加工入射角,材料受壓變形之機械及熱應力與勢能動力關係,並且進一步對提昇修補效率之實作特性與能量轉化,提出最佳製程效能之最適方案。
本文後半段則是針對顯著因子彼此間高度非線性關係對於修補效率的影響,提出完整耦合系統修補效率模型,透過統計科學之推估與模擬,並且以部分因子設計篩選實作中影響修補效率的顯著因子,採用完全因子鍵別顯著因子之主要與交互作用對修補效率的影響,以及這些顯著因
子效應在製程中之能量分配與高效製程之最適安排,並與未實驗設計修補效率數值作比對,若是效率無顯著的提昇,再一次搜尋出額外影響系統的顯著因子,並且建構高效精省模型。針對單晶銅材內部缺陷最低成本與最速修補訴求條件下,應用已建構完整耦合系統修補效率模型,並且來回疊代作修正,以建構出降低單晶銅材內部缺陷修補成本與提昇單晶銅材內部缺陷修補效率為訴求的精省回歸模型。
The objective of this thesis is to investigate the efficiency enhancement of finding defects mending inside the single crystal copper. The femtosecond Pulse Laser(FSPL) has emergeced on an important techniques for mending of various internal structures for solid material in recent year. In the context, the molecular dynamics simulation of defect mending in device of single crystal coppers by fentosecond plus laser(FSPL) is presented, elaborated and validated. At the end, the efficiency improvent of mending approaches are presented and compared via experimental desige technique.
In the first part of the study, molecular dynamics simulation research on defect mending in devices of single crystal coppers by femtosecond plus laser seconds, using standard Morse potential energy function and combined non-reflecting dynamic boundary technique, Simulation of regular and irregular defect cases, through Visual analysis based on Dislocation theory and demonstrated, and conjoined with atomic level simulation of combined method, explore the microscopic simulation of transient phenomena and processes of differential evolution of row, at the same time by the physical quantity display moderate repair efficiency assessment in order to make this patch of process technology efficiency and improve conditions. Through a variety of different energy density pulse width laser processing of incident angle, mechanical and thermal stress of the material compressive deformation and energy power relations and further in enhancing the efficiency of repair of real property and conversion of energy, best processes effectiveness most suitable programmes.
[1] Reid, D. T., “Laser physics: toward attosecond pulses,” Science 291, 1911(2001)
[2] Siwick, B. J., Dwyer, J. R., Jordan, R. E. R., and Miller, J. D., “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382(2003)
[3] Yang, J., Zhao, Y., and Zhua, X., “Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses,” Appl. Phys. Lett. 88, 094101(2006)
[4] Lui, X., Du, D., and Mourou, G., “Laser ablation and micromachining with ultrashort. laser pulses,” IEEE J. Quantum Elect. 33, 1706(1997)
[5] Choi , T .Y., Hwang,D.J., and Grigoropoulos C. P., “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42, 3383(2003)
[6] Sun, H., Han, M., Niemz, M. H., and Bille, J. F., “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39, 654(2007)
[7] Paltauf, G., and Dyer, P. E., “Photomechanical processes and effects in ablation,” Chem. Rev. 103, 487(2003)
[8] Lindenberg, A. M. et al., “Atomic-scale visualization of inertial dynamics,” Science 308, 392(2005)
[9] Sundaram, S., Mazur,K. E., Nature Mat. 1, 217(2002)
[10]Qiu, T. Q., and Tien, C. L., “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115, 835(1993)
[11] Perez, D. L., and Lewis, J., “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67, 184102(2003)
[12] Zhigilei, L., Leveugle, V. E., Garrison, B. J., Yingling, Y. G., and Zeifman, M. I., “Computer simulations of laser ablation of molecular substrates,” Chem. Rev. 103, 321(2003)
[13] Callan, J. P.,” Ultrafast Dynamics And Phase Changes In Solids Excited By Femtosecond Laser Pulses, Cambridge: Harvard Univ.” 2000
[14] Guo, C., Rodriguez, G., Lobad, A., and Taylor, A. J., Phys. Rev. Lett. 84, 4493(2000)
[15] Ion, J. C., “Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, Amsterdam: Elsevier Butterworth-Heinemann,”2005
[16] Lu,K., and Li,Y., “Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal,” Phys. Rev. Lett. 80, 4474(1998)
[17] Rethfeld, B., Sokolowski-Tinten, K. D., von der Linde, S. I., and Anisimov., “Ultrafast thermal melting of laser-excited solids by homogeneous nucleation,” Phys. Rev. B 65, 092103(2002)
[18] Cleveland,C. L., Landman,U., and Barnett, R. N., “Molecular dynamics of a laser-annealing experiment,” Phys. Rev. Lett. 49, 790(1982)
[19] Nakata,Y., Okada,T., and Maeda, M., “Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams,”Appl. Phys. A 79, 1481(2004)
[20] Wang,J. R., Weaver, L. N., and Sottos,R.,” A parametric study of laser thin film spallation,”Exp. Mech. 42, 74(2002)
[21] Tamura H. J. et al., “Femtosecond-laser-induced spallation in aluminum,” Appl. Phys. 89, 3520(2000)
[22] Zhu, W. H., and Yoshida,M. J., “Spall strength of thin aluminum foils at ultra high strain rate,” Mater. Sci. Lett. 21, 1569 (2002)
[23] Lai,H. Y., Huang,P. H., and Fang,T. H., “Microscopic spallation mechanisms induced by a pulse laser at the solid-state interface,” Appl. Phys. A 86, 497(2007)
[24] Schafer,C. H., Urbassek, M., and Zhigilei, L. V., “Metal ablation by picosecond laser pulses: A hybrid simulation,” Phys. Rev. B 66, 115404(2002)
[25] Cheng, C., and Xu, X., “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005)
[26] Amoruso S. et al., “An analysis of the dependence on photon energy of the process of nanoparticle generation by femtosecond laser ablation in a vacuum,” Nanotechnology 18, 145612(2007)
[27] Kaganov, M. I., Lifshitz,I. M., and Tanatarov,L.V., “Relaxation between electrons and crystalline lattices,” Sov. Phys. JETP 4, 173(1957)
[28] Anisimov, S. I., Kapeliovich, B. L., and Perel’man, T. L., “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375(1974)
[29] Perez, D., and Lewis, L.J., “Ablation of Solids under Femtosecond Laser Pulses,” Phys. Rev. Lett. 89, 255504(2002)
[30] Ivanov, D. S., and Zhigilei, L. V., “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114(2003)
[31] Chokappa, D. K., Cook, S. J., and Clancy,P., “Nonequilibrium simulation method for the study of directed thermal processing,” Phys. Rev. B 39, 10075(1987)
[32] Lennard-Jones, J. E., “The determination of molecular fields. I. From the variation of the viscosity of a gas with temperature,” Proc. Roy. Soc. (Lond.), 106A, 441(1924); “The determination of molecular fields. II. From the equation of state of a gas,”Proc. Roy. Soc. (Lond.), 106A, 443(1924)
[33] Zhigilei, L. V., and Garrison, B. J., “Pressure waves in microscopic simulations of laser ablation,” Mater. Res. Soc. Symp. Proc. Proceeding 538 491(1999)
[34] Schafer C., et al., “Pressure-transmitting boundary conditions for molecular-dynamics simulations,” Comput. Mater. Sci. 24, 421(2002)
[35] Wang, X., and Xu, X., “Molecular dynamics simulation of heat transfer and phase change during laser material interaction,” J. Heat Transf. Trans. ASME 124, 265(2002)
[36] Wang, X., and Xu, X., “Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction,” Int. J. Heat. Mass Trans. 46, 45(2003)
[37] Wang, X., and Xu, X., “Nanoparticles formed in picosecond laser argon crystal interaction,” J. Heat Transf.-Trans. ASME 125, 1147(2003)
[38] Atanasov P. A., et al., “Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation,” Appl. Surf. Sci. 186, 369(2002)
[39] Wang, X., “Thermal and thermomechanical phenomena in picosecond laser copper interaction,” J. Heat Transf. – Trans. ASME 126, 355(2004)
[40] Lorazo, P., Lewis, L., and Meunier1, J. M., “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006)
[41] Jacques, S. L., Laser - Tissue Interaction IX, SPIE Proceedings Series, 3254(1998)
[42] Miller, J. C., and Haglund Jr., R. F.,” Laser Ablation and Desorption,” Academic Press; 1998
[43] Wyatt, R. E., Iung, C., and Leforestier, C., Acc. Chem. Res. 28, 423(1995)
[44] Kim, H., and Dlott, D., “Molecular dynamics simulation of nanoscale thermal conduction and vibrational cooling in a crystalline naphthalene cluster,” J. Chem. Phys. 94, 8203(1991)
[45] Zhigilei, L. V. P., Kodali, B. S., and Garrison, B. J., “Molecular dynamics model for laser ablation of organic solids,” J. Phys. Chem. B 101, 2028(1997)
[46] Zhigilei, V. L., and Barbara, J. G., “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes,” J. Appl. Phys. 88, 1281(2000)
[47] Leveugle, E. D., Ivanov, S., and Zhigilei, L. V., “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys. A 79, 1643(2004)
[48] Huang, P. H., and Lai, H. Y., “Pressure-induced solid-state lattice mending of nanopores by pulse laser annealing,” Nanotechnology 19, 255701(2008)
[49] Lai, H. Y., and Huang, P. H., “Atomistic simulations of spallation dynamics in multilayer thin-film interface excited by femtosecond laser,” Comput. Mater. Sci. 41, 498(2008)
[50] Lai, H. Y., and Huang, P. H., “Laser-irradiated thermodynamic behaviors of spallation and recombination at solid-state interface,” Appl. Surf. Sci. 254, 3067(2008)
[51] Lai, H. Y., and Huang, P. H., “Molecular dynamics analyses of the femtosecond laser-induced grain boundary spallation,” J. Chinese Soc. Mech. Eng. 28, 577(2007)
[52] Huang, P. H., and Lai, H. Y., “Nucleation and propagation of dislocations during nanopore lattice mending by laser annealing: Modified continuum-atomistic modeling,” Phys. Rev. B 77, 125408(2008)
[53] Kelchner, C. L., Plimpton, S. J., and Hamilton,J. C., Phys. Rev. B. 58, 11085(1998)
[54] Zimmerman J. A., et al., “Surface step effects on nanoindentation,” Phys. Rev. Lett. 87, 165507(2001)
[55] de la Fuente O. R., et al., “Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations,” Phys. Rev. Lett. 88, 036101(2002)
[56] 楊衛, “宏微觀斷裂力學,國防工業出版社,”北京,1995.
[57] Heermann, D. W., “Computer simulation methods in theoretical physics ,”Springer-Verlag Berlin Heidelberg, Germany,1986
[58] Metropolis,N., Rosenbluth, A. W., Rosenblluth, N. M., Teller, A. H., and Teller, E., “Equation of state calculations by fast computing machines,”J. Chem. Phys., Vol. 21,pp.1087-92, 1953.
[59] Bird,G., ”Molecular Gas Dynamics, ”Oxford Engineering Science, Oxford University Press, New York, NY,1976.
[60] Haile, J. M.,“Molecular Dynamics simulation :elementary methods ,”John Wiely & Sons,Inc.,USA,1992
[61] Girifalco, L.A., and Weizer, V.G.,”Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol.114, No.3 (1959), p.687-690.
[62] Verlet, L., “ Computer ‘experiments’ on classical fluids Ⅱ, Equilibrium correlation function,” Phys. Rev, Vol. 165, pp.201~14, 1968.
[63] Allen, M.P., and Tildesley, D.J.,”Computer simulation of liquids “Oxford:Clarendon,1970.
[64] 劉孝敏, “工程材料的微細觀結構和力學性能,”中國科學技術大學出版社,合肥,2003.
[65] Reed-Hill, R. E., "Physical Metallurgy Principles", 1994.
[66] Hull, D., and Bacon, D. J.,” Introduction to Dislocations,” 1984.
[67] Kirsten, W. Z., “Static and dynamic analysis of failure locations and void formation in interconnects due to various migration mechanisms,” Mater. Sci. Semicond. Proces. 6, 85(2003)
[68] Callister, W. D., “Materials Science and Engineering: An Introduction,” NY: Wiley; 1990
[69] Lincoln, R. C., Koliwad, K. M., and Chate, P. B., “Morse-potential evaluation of second- and third-order elastic constants of some cubic metals,” Phys. Rev. 157, 463 (1967).
[70] Allen, M. P., and Tildesley, D. J., “Computer Simulation of Liquids,” NY: Oxford University Press; 1987.
[71] Rapaport, D. C., “The Art of Molecular Dynamics Simulation,” London: Cambridge University Press; 1997.
[72] Goodfellow J. M., et al., Molecular dynamics, Boston: CRC Press; 1990
[73] Frenkel, D., and Smit, B., “Understanding Molecular Simulation,” San Diego: Academic Press; 1996.
[74] Heermann, D. W., “Computer Simulation Method,” Berlin: Springer- Verlag; 1990
[75] Evans D. J., et al., “Nonequilibrium molecular dynamics via Gauss's principle of least constraint,” Phys. Rev. A 28, 1016(1983)
[76] Goldstein, H.,” Classical Mechanics,” MA: Addison-Wesley; 1980
[77] Reed-Hill, R. E., "Physical Metallurgy Principles Second Edition," New York: Van Nostrand, 1972.
[78] Qiu, T. Q., Tien, C. L., and Int. J,.” Heat Mass Transf,” 37, 2789(1994)
[79] Wang, X. Y., Riffe, D., Lee, M. Y. S., and Downer, M. C., Phys. Rev. B 50, 8016(1994)
[80] Kaveh, M., and Wiser, N., Adv. Phys. 33, 257(1984)
[81] Yilbas, B. S., Res. Mech. 24, 377(1988)
[82] Anisimov, S. I., Rethfeld, B., Lee, Y. S., and Downer. M. C., Proc. SPIE 192, 3093(1997)
[83] Kittel,C., “Introduction to Solid Stare Physics,” NY: Wiley; 1996
[84] Zhang, X., Schneider, E., Taft, G., Kaptyen, H., Murnane, M., and Backus, S., "Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system," OSA,2012.
[85] Wanga, X., Zhua, Y., Dua,L., Zhanga,W., " The study on porosity and thermophysical properties of nanostructured La2Zr2O7 coatings,"Applied Surface Science,257(2011)
[86] 梨正中, “實驗設計與分析,”高立圖書,1998.
[87] 胡立杰, “高性能鍵合銅絲的製備及球鍵合工藝研究,”蘭州理工大學,蘭州,2009.
[88] Hada ,M., and Matsuo,J., " Effects of ambient pressure on Cu Kα X-ray radiation with millijoule and high-repetition-rate femtosecond laser, "Appl Phys B, (2010)
[89] 林清楠, “分子動力學研究銅薄膜之準分子雷射燒蝕,”國立成功大學, 2003.
校內:2018-01-29公開