簡易檢索 / 詳目顯示

研究生: 陳瑞鴻
Chen, Jui-Hung
論文名稱: 使用粒子群演算法優化基於亞波長波導結構之SOI偏振分光器
Particle Swarm Optimized Silicon Polarization Beam Splitter based on Subwavelength Grating Waveguide
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 77
中文關鍵詞: 偏振分光器亞波長光柵耦合器定向耦合器絕緣層覆矽粒子群演算法
外文關鍵詞: Polarization Beam Splitter (PBS), Subwavelength Grating (SWG), Directional Coupler (DC), Particle Swarm Optimization (PSO), Silicon-on-insulator (SOI)
相關次數: 點閱:184下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來絕緣層上覆矽(SOI)光波導廣泛地運用在光子積體電路中,然而SOI光波導因存在高折射率差的特性,會造成偏振相關的問題。而其偏振的特性會侷限光學系統的運作,因此需要偏振分光器(Polarization Beam Splitter, PBS)與偏振旋轉器(Polarization Splitter Rotator, PSR)所組成的偏振集成系統來改進偏振態所造成的影響。

    在我們的研究中,設計出一個長度僅有10 μm並基於亞波長光柵(Subwavelength Grating Waveguide, SWG)結構的偏振分光器,並利用粒子群最佳化(Particle Swarm Optimization, PSO)演算法優化TE與TM模態的消光比(Extinction Ratio)。而優化過後的結果顯示在1550 nm波長下TE與TM模態可分別實現40 dB與28 dB的消光比和小於1 dB的插入損耗,以及高達90 nm的工作帶寬(>20 dB)。模擬的結果還顯示出偏振分光器具備良好的製程容忍度,這有利於其在矽光子學中的實際應用。

    In this work, we propose a polarization beam splitter (PBS) based on a Subwavelength Grating (SWG) structure with a compact length of only 10.3 μm and the perfect phase matching condition can be achieved in the TM mode, while a significant phase mismatch is observed in the TE mode.

    The optimization of the PBS is performed using Particle Swarm Optimization (PSO) to enhance the Extinction Ratio (ER) of both TE and TM modes. The optimized results demonstrate an extinction ratio of 40 dB for TE mode and 28 dB for TM mode at a wavelength of 1550 nm, along with a wide operating bandwidth of up to 90 nm. Furthermore, the proposed PBS exhibits excellent process tolerance, which is advantageous for its practical application in silicon photonics.

    中文摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Figures v List of Tables viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Waveguide types 2 1.3 Silicon on Insulator (SOI) 3 1.4 Waveguide Modes 3 1.5 Polarization Beam Splitter 6 1.6 Scope of this thesis 11 Chapter 2 Theoretical Background 12 2.1 Subwavelength Grating 12 2.2 Effective Index Method 15 2.3 Coupled Mode Theory 16 2.4 Supermode Theory 22 2.5 Polarization Beam Splitter based on Three Guide Optical Couplers 24 2.6 Profiling of Polarization Beam Splitter 29 2.7 FDTD Simulation 30 2.8 Particle Swarm Optimization 35 Chapter 3 Simulation Results and Discussion 38 3.1 Initial PBS Design 38 3.2 Initial PBS Simulation 44 3.3 Optimizing the PBS Device based on PSO – Case 1 47 3.4 Optimizing the PBS Device based on PSO – Case 2 51 3.5 Optimizing the PBS Device based on PSO – Case 3 55 3.6 Fabrication Tolerance Analysis 59 3.7 Discussion 61 Chapter 4 Conclusion 65 4.1 Conclusion 65 4.2 Future Work 65 Chapter 5 Reference 67 Appendix 75

    1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” IEEE J. Light. Technol., vol. 23, pp. 401-412, (2005).
    2. J. Bowers and H. F. Chou, “Encyclopedia of Modern Optics,” (Academic Press, CA, 2005), pp. 433-440.
    3. S. Chen, H. Wu and D. Dai, “High extinction-ratio compact polarisation beam splitter on silicon,” Electron. Lett., vol. 52, pp.1043-1045, (2016).
    4. N. Badraoui and T. Berceli, “Crosstalk reduction in fiber links using double polarization,” Opt. Quantum. Electron., 52:200, (2020).
    5. C. Deng, M. Lu, Y. Sun, L. Huang, D. Wang, G. Hu, R. Zhang, B. Yun, and Y. Cui, “Broadband and compact polarization beam splitter in LNOI hetero-anisotropic metamaterials,” Opt. Express., vol. 29, pp. 11627-11634, (2021).
    6. H. Z. Qiang, L. Bin, L. T. Tian, H. D. Dong and G. J. Min, ” Silicon-based C-band low-loss compact polarization splitter rotator based on PSO algorithm,“ J. Infrared. Millim. Waves., vol. 42, pp. 132-141, (2023).
    7. A. Guha. J. Bristow. C. Sullivan and A. Husain, "Optical intcrconnections for massively parallel architectures." Appl. Opt., vol. 29, pp. 1077-1093, (1990).
    8. C. F. Kane, and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett., vol. 7, pp. 535-537, (1995).
    9. P. Kozma, F. Kehl, E. E. Förster, C. Stamm, F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron., vol. 58 pp. 287-307.
    10. G. K. Celler, “Frontiers of silicon-on-insulator,” J. Appl. Phys., vol. 93, pp. 4955, (2003).
    11. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 1971-1974, (1986).
    12. J. M. Liu, “Photonic devices,” (Cambridge University Press, Cambridge, 2016), pp. 73-78.
    13. T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett., vol. 17, pp. 393-395, (2005).
    14. D. Dai, Z. Wang, J. Peters and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach–Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett., vol. 24, pp. 673-675, (2012).
    15. Z. Lin, K. Chen, Q. Huang and S. He, “Ultra-broadband polarization beam splitter based on cascaded Mach-Zehnder Interferometers assisted by effectively anisotropic structures,” IEEE Photon. J., vol. 13, (2021).
    16. M. Yin, W. Yang, Y. Lin, X. Wang and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt Commun., vol. 335, pp. 48-52, (2015).
    17. W. Yang, Y. Xu, Y. Li, X. Wang and Z. Wang, “A compact and wide-band polarization beam splitter based on wedge-shaped MMI coupler in silicon-on-insulator,” Opt. Lett., W2A.12, (2015).
    18. Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun., vol. 307, pp. 46–49, (2013).
    19 . L. Xu, Y. Wang, A. Kumar, D. Patel, E. E. Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI Coupler with SWG birefringence engineering on SOI,” IEEE Photon. Technol. Lett., vol. 30, pp. 403-406, (2018).
    20. Y. Shi, D. Dai, S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted Multimode Interference Coupler,” IEEE Photon. Technol. Lett., vol. 19, pp. 825-827, (2007).
    21. P. Lalanne, J. Hazart, P. Chavel, E. Cambril and H. Launois, “ A transmission polarizing beam splitter grating,” IOP., vol. 1, pp. 215-219, (1999).
    22. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett., vol. 32, pp. 1299-1301, (2007).
    23. J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett., vol. 32, pp. 1662-1664, (2007).
    24. D. Dai, Z. Wang and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett., vol. 36, pp. 2590-2592, (2011).
    25. C. Li, M. Zhang, J. E. Bowers, and D. Dai, “Ultra-broadband polarization beam splitter with silicon subwavelength-grating waveguides,” Opt. Lett., vol. 45, pp. 2259-2262, (2020).
    26. K. Tan, Y. Huang, G. Q. Lo, C. Lee, and C. Yu, “Compact highly-efficient polarization splitter and rotator based on 90° bends,” Opt. Express., vol.24, pp. 14506-14512, (2016).
    27. Y. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide,” Opt. Express., vol. 43, pp. 3241-3244, (2016).
    28. C. Li and D. Dai, ” Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Express., vol. 42, pp. 4243-4246, (2017).
    29. L. Liu, Q. Deng, and Z. Zhou, ” Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating,” Opt. Express., vol.41, pp. 5126 -5129, (2016).
    30. F. Zhang, J. Zheng, Y. Song, W. Liu, P. Xu, and A. Majumdar, ” Ultra-broadband and compact polarizing beam splitter in silicon photonics,” OSA. Continuum., vol. 3, pp. 560 -567, (2020).
    31. S. Mao, L. Cheng, C. Zhao, and H. Y. Fu, “Ultra-broadband and ultra-compact polarization beam splitter based on a tapered subwavelength-grating waveguide and slot waveguide,” Opt. Express., vol. 29, pp. 28066 -28077, (2021).
    32. B. Bhandari, C. S. Im, O. R. Sapkota and S. S. Lee, “Highly efficient broadband silicon nitride polarization beam splitter incorporating serially cascaded asymmetric directional couplers,” Opt. Lett., vol. 45, pp. 5974 -5977, (2020).
    33. B. Li and S. J. Chua, “Optical switches,” (Woodhead Press, Philadelphia, 2010), pp. 194-195.
    34. P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett., vol. 6, pp. 245-248, (1994).
    35. L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference devices based on self-imaging : principles and applications,” J. Light. Technol., vol. 13, pp. 615-627, (1995).
    36. M. Yuan, X. Han, H. Xiao, T. G. Nguyen, A. Boes, G. Ren, Q. Hao, J. Xue, A. Mitchell and Y. Tian, “Integrated lithium niobate polarization beam splitter based on a photonic-crystal-assisted multimode interference coupler,” Opt. Lett., vol. 48, pp. 171-174, (2023).
    37. E. Heemskerk and B. I. Akca, “On-chip polarization beam splitter design for optical coherence tomography,” Opt. Express., vol.26, pp. 33349-33355, (2018).
    38. R. Halir, P. J. Bock, P. Cheben, A. O. Monux, C. A. Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. W. Perez, I. M. Fernandez and S. Janz, “Waveguide sub-wavelength structures: a review of principlesand applications,” Laser Photonics Rev. vol. 9, pp. 25-49, (2015).
    39. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A.Delage, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating period structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express., vol. 18, pp. 20251-20262, (2010).
    40. C. W. Haggans, L. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am., vol.10, pp. 2217-2225, (1993).
    41. J. Schmid, P. Cheben, S. Janz and J, Lapointe, “Subwavelength grating structures in planar waveguide facets for modified reflectivity,” SPIE., vol. 6796, 67963E, (2007).
    42. S. M. Rytov, “Electromagnetic Properties of a Finely Stratified Medium,” Sov. phys. JETP., vol. 2, pp. 605-616, (1955).
    43. R. Osgood and X. Meng, “Principles of Photonic Integrated Circuits,” (Springer Press, Cham, 2021), pp. 79-81.
    44. J. M. Liu, “Principles of Photonics,” (Cambridge University Press, New York, 2016), pp. 141-149.
    45. L. Szostkiewicz, M. Napierala, A. Ziolowicz, A. Pytel, T. Tenderenda, and T. Nasilowski, “Cross talk analysis in multicore optical fibers by supermode theory,” Opt. Lett., vol. 41, pp. 3759-3762, (2016).
    46. K. Yamada, “Silicon Photonic Wire Waveguides: Fundamentals and Applications, ” Topics in Applied Physics., vol. 119, pp. 1-29, (2011).
    47. J. Donnelly, N. DeMeo and G. Ferrante, “Three-guide optical couplers in GaAs,” IEEE. J. Light. Technol., vol. 1, pp. 417-424, (1983).
    48. J. Donnelly, H. Haus and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron., vol. 23 pp. 401-406, (1987).
    49. T. Grosges, A. Vial and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Lett., vol. 21, pp. 8483-8497 (2005).
    50. D. Gallagher, “Photonic CAD matures,” IEEE. LEOS. NewsLett., vol. 22, pp. 8-14, (2008).
    51. K. S. Kunz and R. J. Luebbers, “Finite Difference Time Domain Method for Electromagnetics,” (Academic Press, New York, 2000) pp. 16-19.
    52. M. V. K. Chari and S. J. Salon, “Numerical Methods in Electromagnetism,” (CRC Press, Boca Raton, 1993) pp. 136-139.
    53. A. C. Cangellaris, “Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides,” IEEE Microwave Guided Wave Lett., pp. 3-5, (1993).
    54. S. Mao, L. Cheng, C. Zhao, F. N. Khan, Q. Li and H. Y. Fu, “Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks,” Appl. Sci., vol.11, 3822, (2021).
    55. B. Z. Weiwei, C. Pengjun, W. Shixun, D. Hongxiang, L. Hao, L. Jian, D. Jun, L.Yan, L. Qiang, F. Tingge, D. Yuehai and W. J. Yang, “Particle swarm optimized polarization beam splitter using metasurface-assisted silicon nitride Y-junction for mid-infrared wavelengths,” Opt. Commun., vol. 451, pp. 186-191, (2019).
    56. H. Liu, J. Feng, J. Ge, S. Zhuang, S. Yuan, Y. Chen, X. Li, Q. Tan, Q. Yu and H. Zeng, “Nano-Grating Based Ultra-Compact Broadband Polarizing Beam Splitter for Silicon Photonics,” Nano., vol. 11, 2645, (2021).
    57. Q. Lua, W. Weib, X. Yana, B. Shenc, Y. Luoa, X. Zhanga, X. Rena, “Particle swarm optimized ultra-compact polarization beam splitter on silicon-on-insulator,” Photonics Nanostruct., vol. 32, pp. 9-23, (2018).
    58. W. Chen, B. Zhang, P. Wang, S. Dai, W. Liang, H. Li, Q. Fu, J. Li, Y. Li, T. Dai, H. Yu, and J. Yang, “Ultra-compact and low-loss silicon polarization beam splitter using a particle-swarm-optimized counter-tapered coupler,” Opt. Express., vol.21, pp. 30701-30709, (2020).
    59. R. Shiratori, M. Nakata, K. Hayashi, and T. Baba, “Particle swarm optimization of silicon photonic crystal waveguide transition,” Opt. Lett., vol.8, pp. 1904-1907, (2021).
    60. B. S. Darki, N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun., vol.283, pp.4099-4103, (2010).
    61. Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. B. Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express., vol.1, pp. 1310-1316, (2013).
    62. A. Michaels, M. C. Wu, E. Yablonovitch, “Hierarchical Design and Optimization of Silicon Photonics,” IEEE J. Sel. Top. Quant. Electron., vol. 2, pp. 1-12, (2020).
    63. L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vučković, “Inverse Design and Demonstration of a Compact on-Chip Narrowband Three-Channel Wavelength Demultiplexer,” ACS. Photonics., vol. 5, pp. 301-305, (2018).
    64. W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, and M. Zhang, “Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction,” Opt. Express., vol. 7, pp. 8162-8170, (2018).
    65. B. Shen, P. Wang, R. Polson and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photon., vol. 9, pp. 378-382, (2015).
    66. L. H. Frandsen, O. Sigmund, L. H. Frandsen and O. Sigmund, “Inverse design engineering of all-silicon polarization beam splitters,” SPIE. Opto., 97560Y, (2016).
    67. J. Andkjær, S. Nishiwaki, T. Nomura and O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons, “ J. Opt. Soc. Am. B., vol. 9, pp. 1828-1832, (2010).
    68. L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund and K. Yvind, “ Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express., vol. 7, pp. 8525-8532, (2014).
    69. J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. Neural Netw., pp. 1942-1948, (1995).
    70. T. Huang, Y. Xie, Y. Wu, Z. Cheng, S. Zeng and P. S. Ping, “Compact polarization beam splitter assisted by subwavelength grating in triple-waveguide directional coupler,” Appl. Opt., vol. 58, pp. 2264-2268, (2019).
    71. J. D. S. Merenguel, A. O. Moñux, J. M. Fédéli, J. G. W .Pérez, C. Alonso-Ramos, E. Duran-Valdeiglesias, P. Cheben, I. M. Fernandez, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett., vol. 41, pp. 3443–3446 (2016).
    72. H. Sun, Y. Xu, Y. Dong, B. Zhang and Y. Ni, “Compact and broadband on-chip silicon polarization beam splitter based on tilted subwavelength grating,” J. Opt. Soc. Am. B., vol. 39, pp. 3049-3085, (2022).
    73. M. Lu, C. Deng, Y. Sun, D. Wang, L. Huang, P. Liu, D. Lin, W. Cheng, T. Lin, G. Hu, B. Yun and Y. Cui, “High extinction ratio and broadband polarization beam splitter based on bricked subwavelength gratings on SOI platform,” Opt. Commun., vol.516, 128288, (2022).
    74. Y. Xie, Z. Chen, Y. Wu, Y. Zhao, T. Huang and Z. Cheng, “Bloch supermode interaction for high-performance polarization beam splitting,” SPIE. Opt. Eng., vol. 58, 095102, (2019).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE